Dealing with Operating Issues of Naphtha Catalytic Reforming Units
Dr. Marcio Wagner da Silva, MBA - Book Author
Process Engineering Manager at Petrobras
Question 1 - I am currently working on fixed bed platforming unit. The unit is Semi-regenrative catalytic reforming. The unit was commissioned on 1989.? The unit is designed for Arabian light crude heavy naphtha. We have processed, Iranian light naphtha, Murban naphtha. Currently we are processing Arabian super light naphtha. I see that, the reactor delta T's are high enough (more than the one when process arabian light), but gases production increased, hydrogen purity is between 70 to 43% and reformate yield is OK but RON decreases. The water chloride management is in range. With this, recycle gas compressor discharge temperature and pressure increases as gas production increases. The discharge temperature are so high (200-230F). Common discharge header pressure also increases. As recycle gas flow increases, reactor effluent trim cooler which is before HP separator temperature increases. The temperature must be in range of 100-105F. The current temperatures ranges between 120-140F.
What could the reason's of above query. What action should we take to resolve these problems.
My Response:
This is a relatively common situation faced by refiners which operate with semi-regenerative catalytic reforming processing units. To describe the phenomena that is occurring in this processing unit it's important to remember some concepts of the naphtha catalytic reforming process. In my response I'm considering that the both naphtha are free of contaminants which can reduce the activity of the catalytic beds, especially considering which is a semi-regenerative processing unit.
One of the most relevant reactions which is carried out in the catalytic reforming of naphtha is the paraffin dehydrocyclization which involves the conversion of paraffin's in aromatics which contributes significantly to the octane index of the reformed naphtha. Unfortunately, these reactions are extremely slow and it is necessary to offer adequate residence time to ensure that the paraffin dehydrocyclization reactions occur.
Considering the scenario presented in your question, I understand that the change of naphtha from AL (Arabian Light Crude) for ASL (Arabian Super Light Crude) is raising the paraffin's content in the feed of the catalytic reforming unit and a highly paraffinic feed is very hard to processing, especially in a semi-regenerative unit.
Long chain paraffins (as tends to be the case of ASL crude naphtha) tends to suffer hydrocracking which involves the reaction of the paraffins with hydrogen to produce methane, ethane, and propane. These side reactions can be responsible for the reduction in the octane index and hydrogen purity which is mentioned in your question, especially considering that paraffin hydrocracking is a quick reaction in comparison with paraffin dehydrocyclization.
To minimize this problem, it's possible to consider use a blend of naphthas in order to control the paraffins content the catalytic reforming feed, a very good factor to control the quality of the feed is the N + 2 A (Naftenics (%Vol) and Aromatics (% Vol)) parameter which should be controlled in the range required by the processing unit licensor. Another key factor is the initial boiling point of the naphtha feed, the IBP upper to 160 F is recommend for semi-regenerative catalytic reforming units once avoid the paraffin's hydrocracking which normally is favoured in high-pressure naphtha reforming which is a characteristic of semi-regenerative processing units.
领英推荐
My suggestion is to carry out a complete characterization of the naphtha feed from ASL crude to determine the paraffin content, IBP and N + 2 A parameters which should help to understand what is occurring in your processing unit. As mentioned above, a naphtha blending with a heavier naphtha can help to solve this situation. Another alternative is to reduce the severity of the processing unit in order to minimize the paraffins hydrocracking.
Question 2 - What are water partial pressure & chloride partial pressure in the fixed bed catalyst of Naphtha Reforming Unit ? And how can be controlled ?
My Response:
The management of water/chloride relation is a key parameter for catalytic reforming units aiming to ensure an adequate balance between the acidic and metal functions of the catalyst. Normally, fresh catalytic reforming catalysts presents close to 1,0 %? wt of chloride, to maintain this chloride concentration it's necessary to control the water concentration aiming to allow an effective interaction between the alumina (catalyst support) and the chloride, reaching then a good performance of acidic sites of the catalyst which is responsible by the cracking reactions.
According to the literature, several factors impact the chlorides concentration in catalytic reforming catalysts. The reactor temperature and surface area of the support can directly affect the chloride concentration in the catalyst and are the most relevant factors. Still according to the literature, fixed bed catalytic reforming reactors should operate keeping the water to chloride molar ratio between 15 to 25 in the recycle gas aiming the keep the activity of the catalyst, to control this parameter it's necessary to install sample facilities or on line monitoring systems in adequate points aiming to keep this parameter according to the licensor specifications. It's possible to find in the specialized literature chlorides equilibrium curves capable of helping the refiners to control the water to chloride ratio in the catalyst under the specifications defined by the licensors.
Dr. Marcio Wagner da Silva is Process Engineer and Stockpiling Manager on Crude Oil Refining Industry based in S?o José dos Campos, Brazil. Bachelor’s in chemical engineering from University of Maringa (UEM), Brazil and PhD. in Chemical Engineering from University of Campinas (UNICAMP), Brazil. Has extensive experience in research, design and construction to oil and gas industry including developing and coordinating projects to operational improvements and debottlenecking to bottom barrel units, moreover Dr. Marcio Wagner have MBA in Project Management from Federal University of Rio de Janeiro (UFRJ), in Digital Transformation at PUC/RS, and is certified in Business from Getulio Vargas Foundation (FGV).
Process Engineering Manager at Petrobras
1 年#catalysis
Principal / Sen. Consultant - American European Consulting Company (AECC)
1 年Naphta Cat Reforming Unit
Principal / Sen. Consultant - American European Consulting Company (AECC)
1 年Fixed bed platforing