?? Day 16: Demystifying BERT's Journey (Foundational Model)??
JIGNESH KUMAR
MIS & Admin | Placement Representative | Data Science Enthusiast | ICE 24' SLIET
A. BERT: Unveiling the History and Evolution
1. Introduction:
BERT, or Bidirectional Encoder Representations from Transformers, stands as a ground-breaking achievement in the history of natural language processing (NLP). Developed by Google AI in 2018, BERT redefined how machines comprehend and process human language.
2. Evolution of Language Models:
Before BERT, language models primarily followed a unidirectional approach, processing text sequentially from left to right or vice versa. While effective, these models struggled to capture nuanced contextual relationships between words.
3. Key Developments:
4. BERT's Journey:
5. Impact on NLP Tasks:
B. BERT: Applications, Benefits, and Scenarios
1. Applications of BERT:
a) Search Engine Optimization (SEO):
b) Chatbots and Virtual Assistants:
领英推荐
c) Text Summarization:
d) Sentiment Analysis:
e) Named Entity Recognition (NER):
2. Benefits of BERT:
3. Scenarios for BERT Usage:
C. BERT in a Data science Project
Adding BERT to a data science project involves using pre-trained BERT models and fine-tuning them for specific tasks. Below is a simplified example using the Hugging Face Transformers library in Python:
# Install the Transformers library
!pip install transformers
# Import necessary libraries
import torch
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from torch.utils.data import DataLoader, TensorDataset
# Load pre-trained BERT model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
# Example data preparation
texts = ["Example text 1", "Example text 2"]
labels = [1, 0]
# Tokenize input texts
tokenized_texts = [tokenizer(text, padding=True, truncation=True, return_tensors='pt') for text in texts]
# Prepare DataLoader
input_ids = torch.cat([t['input_ids'] for t in tokenized_texts], dim=0)
attention_mask = torch.cat([t['attention_mask'] for t in tokenized_texts], dim=0)
labels = torch.tensor(labels)
dataset = TensorDataset(input_ids, attention_mask, labels)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)
# Define optimizer and loss function
optimizer = AdamW(model.parameters(), lr=1e-5)
criterion = torch.nn.CrossEntropyLoss()
# Training loop
num_epochs = 3
for epoch in range(num_epochs):
model.train()
for batch in dataloader:
input_ids, attention_mask, labels = batch
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Save the fine-tuned model for later use
model.save_pretrained('fine_tuned_bert_model')