Daten-Visualisierung in Python3
Die folgenden, kleinen Python-Scripts zeigen, wie man in Python mit wenig code Daten-Visualisierung betreiben kann.
import matplotlib.pyplot as pyplot import numpy x = numpy.random.randn(10000) pyplot.hist(x, 100) pyplot.title(r"Normalverteilung mit $\mu=0, \sigma=1$") pyplot.savefig("normal.png") pyplot.show() # use_pandas.py import matplotlib as mpl import matplotlib.pyplot as plt import pandas df_can = pandas.read_excel("df_total.xls") df_can['Total'].plot(kind='pie') plt.title(r'Immigration to Canada') plt.show() # use_pandas_hist.py import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas df_can = pandas.read_excel("imig.xls") count, bin_edges = np.histogram(df_can[1980]) df_can[1980].plot(kind='hist', xticks=bin_edges) plt.title("Histogram") plt.xlabel("Number of immigs") plt.ylabel("No. of countriue") plt.show() # use_pandas_bar.py import matplotlib as mpl import matplotlib.pyplot as plt import pandas df_can = pandas.read_excel("imig.xls") years = list(map(str, range(1980, 1982))) df_can.plot(kind='bar') plt.title("bar chart") plt.xlabel("years") plt.ylabel("No. of immigs") plt.show() # use_pandas_seaborn.py import matplotlib.pyplot as plot import pandas import seaborn as sns df_total = pandas.read_excel("df_total.xls") ax = sns.regplot(x='year', y='Total', data?=df_total) plot.show() # FOLIUM WORLD MAP import folium import matplotlib.pyplot as plot import webbrowser, os m = folium.Map(location=[49.8313889, 9.2069444], zoom_start=12, tiles='Stamen Terrain') elsenfeld = folium.map.FeatureGroup() #elsenfeld.add_child(folium.features.CircleMarker([49.8313889, 9.2069444], radius=5, color="red", fill_color="yellow")) m.add_child(elsenfeld) folium.Marker([49.8313889, 9.2069444], popup="Elsenfeld-Rück").add_to(m) url = 'index.html' m.save(url) webbrowser.open(url)
Die Listings mit den resultierenden Grafiken sind zu sehen unter
https://www.thomas-boor.de/py_visualize.html