Data sanity checks: Let's deep dive
A quick summary with oceanic examples {I love ocean ??}
1. Range Checks
Ensure gathered data values fall within expected limits.
Example:
2. Type Checks
Confirm data values are of the correct type.
Example:
3. Format Checks
Ensure data follows specific formats.
Example:
4. Uniqueness Checks
Ensure fields contain unique values.
Example:
5. Consistency Checks
Ensure data values are logically consistent.
领英推荐
Example:
6. Completeness Checks
Ensure all required fields are filled.
Example:
7. Validity Checks
Confirm data values meet predefined rules.
Example:
8. Duplicate Checks
Identify and handle duplicate records.
Example:
Why Data Sanity Checks Matter?
Conclusion
Understanding data pre-processing is of utmost importance. Functional data facilities quicker, scalability and economical outcomes. Let's keep data tidy!
Head of Engineering, Stitchflow | Python Backend / Data and Devops Systems | Speaker Pycon India and Australia
8 个月Wonderful article