"Data Prep: Clean, Normalize, Transform"
Step 1: Dealing with duplicates, missing values, and outliers
Step 2: Data normalization and standardization
领英推荐
Step 3: Feature scaling and transformation
Remember, data cleaning and preprocessing are crucial for building accurate and effective machine learning models. These steps ensure that your data is in good shape for analysis and modeling, leading to more reliable insights and predictions.
EXAMPLE CODE:
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import PowerTransformer
from scipy import stats
# Step 1: Dealing with duplicates, missing values, and outliers
# Load your dataset
data = pd.read_csv('your_dataset.csv')
# Remove duplicates
data = data.drop_duplicates()
# Handle missing values
imputer = SimpleImputer(strategy='mean')
data_filled = imputer.fit_transform(data)
# Detect and handle outliers using Z-score
z_scores = stats.zscore(data_filled)
data_no_outliers = data_filled[(z_scores < 3).all(axis=1)]
# Step 2: Data normalization and standardization
# Normalization
scaler_norm = MinMaxScaler()
data_normalized = scaler_norm.fit_transform(data_no_outliers)
# Standardization
scaler_std = StandardScaler()
data_standardized = scaler_std.fit_transform(data_no_outliers)
# Step 3: Feature scaling and transformation
# Transformation (using Box-Cox)
pt = PowerTransformer(method='box-cox')
data_transformed = pt.fit_transform(data_standardized)
# Now you can use the 'data_transformed' for analysis or modeling
Next Trend Realty LLC./wwwHar.com/Chester-Swanson/agent_cbswan
1 年Thanks for Sharing.