Cyber crime cases and confusion matrix
What is a Confusion Matrix?
A Confusion matrix is an N x N matrix used for evaluating the performance of a classification model, where N is the number of target classes. The matrix compares the actual target values with those predicted by the machine learning model.
For a binary classification problem, we would have a 2 x 2 matrix as shown below with 4 values:
True Positive (TP)
- The predicted value matches the actual value
- The actual value was positive and the model predicted a positive value
True Negative (TN)
- The predicted value matches the actual value
- The actual value was negative and the model predicted a negative value
False Positive (FP) – Type 1 error
- The predicted value was falsely predicted
- The actual value was negative but the model predicted a positive value
- Also known as the Type 1 error
False Negative (FN) – Type 2 error
- The predicted value was falsely predicted
- The actual value was positive but the model predicted a negative value
- Also known as the Type 2 error
Talking about the 2 types of errors a type I error is the rejection of a true null hypothesis (also known as a "false positive" finding or conclusion; example: "an innocent person is convicted"), while a type II error is the non-rejection of a false null hypothesis (also known as a "false negative" finding or conclusion; example: "a guilty person is not convicted").
Much of statistical theory revolves around the minimization of one or both of these errors, though the complete elimination of either is a statistical impossibility for non-deterministic algorithms. By selecting a low threshold (cut-off) value and modifying the alpha (p) level, the quality of the hypothesis test can be increased. The knowledge of Type I errors and Type II errors is widely used in medical science, biometrics and computer science.
CYBER CRIME
According to Wikipedia, Cybercrime, or computer crime, is a crime that involves a computer and a network. The computer may have been used in the commission of a crime, or it may be the target. Cybercrime may harm someone's security and financial health.
CYBER CRIMES AND CONFUSION MATRIX
Particularly in the last decade, Internet usage has been growing rapidly. However, as the Internet becomes a part of the day to day activities, cybercrime is also on the rise. Cybercrime will cost nearly $6 trillion per annum by 2021 as per the cybersecurity ventures report in 2020. For illegal activities, cybercriminals utilize any network computing devices as a primary means of communication with a victims' devices, so attackers get profit in terms of finance, publicity and others by exploiting the vulnerabilities over the system. Cybercrimes are steadily increasing daily. Evaluating cybercrime attacks and providing protective measures by manual methods using existing technical approaches and also investigations has often failed to control cybercrime attacks. Existing literature in the area of cybercrime offenses suffers from a lack of a computation methods to predict cybercrime, especially on unstructured data. Therefore, this study proposes a flexible computational tool using machine learning techniques to analyze cybercrimes rate at a state wise in a country that helps to classify cybercrimes. Security analytics with the association of data analytic approaches help us for analyzing and classifying offenses from India-based integrated data that may be either structured or unstructured. The main strength of this work is testing analysis reports, which classify the offenses accurately with 99 percent accuracy.
Cyber-attacks have become one of the biggest problems of the world. They cause serious financial damages to countries and people every day. The increase in cyber-attacks also brings along cyber-crime. The key factors in the fight against crime and criminals are identifying the perpetrators of cyber-crime and understanding the methods of attack. Detecting and avoiding cyber-attacks are difficult tasks. However, researchers have recently been solving these problems by developing security models and making predictions through artificial intelligence methods. A high number of methods of crime prediction are available in the literature. On the other hand, they suffer from a deficiency in predicting cyber-crime and cyber-attack methods. This problem can be tackled by identifying an attack and the perpetrator of such attack, using actual data. The data include the type of crime, gender of perpetrator, damage and methods of attack. The data can be acquired from the applications of the persons who were exposed to cyber-attacks to the forensic units. In this paper, we analyze cyber-crimes in two different models with machine-learning methods and predict the effect of the defined features on the detection of the cyber-attack method and the perpetrator. We used eight machine-learning methods in our approach and concluded that their accuracy ratios were close.
Support vector machine
This method includes support vector classification and support vector regression. SVM is based on the concept of decision limits, supporting both binary and more classifications. Considering the training data D:
D ? f xi e Tj ; yi xi 2 R p ; yi 2 f gg 1; 1 n i?1
The Support Vector Machine Linear was found out to be the most successful in the cyber-attack method, with an accuracy rate of 95.02%. In the first model, we could predict the types of attacks that the victims were likely to be exposed to with a high accuracy. The Logistic Regression was the leading method in detecting attackers with an accuracy rate of 65.42%. In the second model, we predicted whether the perpetrators could be identified by comparing their characteristics. Our results have revealed that the probability of cyber-attack decreases as the education and income level of victim increases. We believe that cyber-crime units will use the proposed model. It will also facilitate the detection of cyber-attacks and make the fight against these attacks easier and more effective.
Sales and Marketing Manager | Boosting Revenue Through Strategic Planning & Market Insights | Marketing Strategist | Technical Engineer
3 年Nice??