Computer Vision

Computer Vision

What is computer vision?

Computer vision is a field of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos and other visual inputs — and take actions or make recommendations based on that information. If AI enables computers to think, computer vision enables them to see, observe and understand.

Computer vision works much the same as human vision, except humans have a head start. Human sight has the advantage of lifetimes of context to train how to tell objects apart, how far away they are, whether they are moving and whether there is something wrong in an image.

Computer vision trains machines to perform these functions, but it has to do it in much less time with cameras, data and algorithms rather than retinas, optic nerves and a visual cortex. Because a system trained to inspect products or watch a production asset can analyze thousands of products or processes a minute, noticing imperceptible defects or issues, it can quickly surpass human capabilities.

Computer vision is used in industries ranging from energy and utilities to manufacturing and automotive – and the market is continuing to grow. It is expected to reach USD 48.6 billion by 2022.

How does computer vision work?

Computer vision needs lots of data. It runs analyses of data over and over until it discerns distinctions and ultimately recognize images. For example, to train a computer to recognize automobile tires, it needs to be fed vast quantities of tire images and tire-related items to learn the differences and recognize a tire, especially one with no defects.

Two essential technologies are used to accomplish this: a type of machine learning called?deep learning ?and a convolutional neural network (CNN).

Machine learning uses algorithmic models that enable a computer to teach itself about the context of visual data. If enough data is fed through the model, the computer will “look” at the data and teach itself to tell one image from another. Algorithms enable the machine to learn by itself, rather than someone programming it to recognize an image.

A CNN helps a machine learning or deep learning model “look” by breaking images down into pixels that are given tags or labels. It uses the labels to perform convolutions (a mathematical operation on two functions to produce a third function) and makes predictions about what it is “seeing.” The neural network runs convolutions and checks the accuracy of its predictions in a series of iterations until the predictions start to come true. It is then recognizing or seeing images in a way similar to humans.

Much like a human making out an image at a distance, a CNN first discerns hard edges and simple shapes, then fills in information as it runs iterations of its predictions. A CNN is used to understand single images. A recurrent neural network (RNN) is used in a similar way for video applications to help computers understand how pictures in a series of frames are related to one another.

Learn more about machine learning?


The history of computer vision

Scientists and engineers have been trying to develop ways for machines to see and understand visual data for about 60 years. Experimentation began in 1959 when neurophysiologists showed a cat an array of images, attempting to correlate a response in its brain. They discovered that it responded first to hard edges or lines, and scientifically, this meant that image processing starts with simple shapes like straight edges.(2)

At about the same time, the first computer image scanning technology was developed, enabling computers to digitize and acquire images. Another milestone was reached in 1963 when computers were able to transform two-dimensional images into three-dimensional forms. In the 1960s, AI emerged as an academic field of study, and it also marked the beginning of the AI quest to solve the human vision problem.

要查看或添加评论,请登录

社区洞察

其他会员也浏览了