Business intelligence (BI)

Business intelligence (BI)

What is business intelligence?

Business intelligence (BI) is a technology-driven process for analyzing data and delivering actionable information that helps executives, managers and workers make informed business decisions. As part of the BI process, organizations collect data from internal IT systems and external sources, prepare it for analysis, run queries against the data and create data visualizations, BI dashboards and reports to make the analytics results available to business users for operational decision-making and strategic planning.

The ultimate goal of BI initiatives is to drive better business decisions that enable organizations to increase revenue, improve operational efficiency and gain competitive advantages over business rivals. To achieve that goal, BI incorporates a combination of analytics, data management and reporting tools, plus various methodologies for managing and analyzing data.

How does the business intelligence process work?

A business intelligence architecture includes more than just BI software. Business intelligence data is typically stored in a data warehouse built for an entire organization or in smaller data marts that hold subsets of business information for individual departments and business units, often with ties to an enterprise data warehouse. In addition, data lakes based on Hadoop clusters or other big data systems are increasingly used as repositories or landing pads for BI and analytics data, especially for log files, sensor data, text and other types of unstructured or semistructured data.

BI data can include historical information and real-time data gathered from source systems as it's generated, enabling BI tools to support both strategic and tactical decision-making processes. Before it's used in BI applications, raw data from different source systems generally must be integrated, consolidated and cleansed using data integration and data quality management tools to ensure that BI teams and business users are analyzing accurate and consistent information.

From there, the steps in the BI process include the following:

  • data preparation, in which data sets are organized and modeled for analysis;
  • analytical querying of the prepared data;
  • distribution of key performance indicators (KPIs) and other findings to business users; and
  • use of the information to help influence and drive business decisions.

Initially, BI tools were primarily used by BI and IT professionals who ran queries and produced dashboards and reports for business users. Increasingly, however, business analysts, executives and workers are using business intelligence platforms themselves, thanks to the development of self-service BI and data discovery tools. Self-service business intelligence environments enable business users to query BI data, create data visualizations and design dashboards on their own.

BI programs often incorporate forms of advanced analytics, such as data mining, predictive analytics, text mining, statistical analysis and big data analytics. A common example is predictive modeling that enables what-if analysis of different business scenarios. In most cases, though, advanced analytics projects are conducted by separate teams of data scientists, statisticians, predictive modelers and other skilled analytics professionals, while BI teams oversee more straightforward querying and analysis of business data.

Why business intelligence is important

Overall, the role of business intelligence is to improve an organization's business operations through the use of relevant data. Companies that effectively employ BI tools and techniques can translate their collected data into valuable insights about their business processes and strategies. Such insights can then be used to make better business decisions that increase productivity and revenue, leading to accelerated business growth and higher profits.

Without BI, organizations can't readily take advantage of data-driven decision-making. Instead, executives and workers are primarily left to base important business decisions on other factors, such as accumulated knowledge, previous experiences, intuition and gut feelings. While those methods can result in good decisions, they're also fraught with the potential for errors and missteps because of the lack of data underpinning them.

Benefits of business intelligence

A successful BI program produces a variety of business benefits in an organization. For example, BI enables C-suite executives and department managers to monitor business performance on an ongoing basis so they can act quickly when issues or opportunities arise. Analyzing customer data helps make marketing, sales and customer service efforts more effective. Supply chain, manufacturing and distribution bottlenecks can be detected before they cause financial harm. HR managers are better able to monitor employee productivity, labor costs and other workforce data.

Overall, the key benefits that businesses can get from BI applications include the ability to:

  • speed up and improve decision-making;
  • optimize internal business processes;
  • increase operational efficiency and productivity;
  • spot business problems that need to be addressed;
  • identify emerging business and market trends;
  • develop stronger business strategies;
  • drive higher sales and new revenues; and
  • gain a competitive edge over rival companies.

BI initiatives also provide narrower business benefits -- among them, making it easier for project managers to track the status of business projects and for organizations to gather competitive intelligence on their rivals. In addition, BI, data management and IT teams themselves benefit from business intelligence, using it to analyze various aspects of technology and analytics operations.


In addition, modern BI platforms typically include:

  • data visualization software for designing charts and other infographics to show data in an easy-to-grasp way;
  • tools for building BI dashboards, reports and performance scorecards that display visualized data on KPIs and other business metrics;
  • data storytelling features for combining visualizations and text in presentations for business users; and
  • usage monitoring, performance optimization, security controls and other functions for managing BI deployments.


What are some examples of business intelligence use cases?

In general terms, enterprise BI use cases include:

  • monitoring business performance or other types of metrics;
  • supporting decision-making and strategic planning;
  • evaluating and improving business processes;
  • giving operational workers useful information about customers, equipment, supply chains and other elements of business operations; and
  • detecting trends, patterns and relationships in data.

Specific use cases and BI applications vary from industry to industry. For example, financial services firms and insurers use BI for risk analysis during the loan and policy approval processes and to identify additional products to offer to existing customers based on their current portfolios. BI helps retailers with marketing campaign management, promotional planning and inventory management, while manufacturers rely on BI for both historical and real-time analysis of plant operations and to help them manage production planning, procurement and distribution.

Airlines and hotel chains are big users of BI for things such as tracking flight capacity and room occupancy rates, setting and adjusting prices, and scheduling workers. In healthcare organizations, BI and analytics aid in the diagnosis of diseases and other medical conditions and in efforts to improve patient care and outcomes. Universities and school systems tap BI to monitor overall student performance metrics and identify individuals who might need assistance, among other applications.

Business intelligence for big data

BI platforms are increasingly being used as front-end interfaces for big data systems that contain a combination of structured, unstructured and semistructured data. Modern BI software typically offers flexible connectivity options, enabling it to connect to a range of data sources. This, along with the relatively simple user interface (UI) in most BI tools, makes it a good fit for big data architectures.

Users of BI tools can access Hadoop and Spark systems,?NoSQL databases and other big data platforms, in addition to conventional data warehouses, and get a unified view of the diverse data stored in them. That enables a broad number of potential users to get involved in analyzing sets of big data, instead of highly skilled data scientists being the only ones with visibility into the data.

Alternatively, big data systems serve as staging areas for raw data that later is filtered and refined and then loaded into a data warehouse for analysis by BI users.

Business intelligence trends

In addition to BI managers, business intelligence teams generally include a mix of BI architects, BI developers, BI analysts and BI specialists who work closely with data architects, data engineers and other data management professionals. Business analysts and other end users are also often included in the BI development process to represent the business side and make sure its needs are met.

To help with that, a growing number of organizations are replacing traditional waterfall development with Agile BI and data warehousing approaches that use Agile software development techniques to break up BI projects into small chunks and deliver new functionality on an incremental and iterative basis. Doing so enables companies to put BI features into use more quickly and to refine or modify development plans as business needs change or new requirements emerge.

Other notable trends in the BI market include the following:

  • The proliferation of augmented analytics technologies. BI tools increasingly offer natural language querying capabilities as an alternative to writing queries in SQL or another programming language, plus AI and machine learning algorithms that help users find, understand and prepare data and create charts and other infographics.
  • Low-code and no-code development. Many BI vendors are also adding graphical tools that enable BI applications to be developed with little or no coding.
  • Increased use of the cloud. BI systems initially were slow to move to the cloud, partly because data warehouses were primarily deployed in on-premises data centers. But cloud deployments of both data warehouses and BI tools are growing; in early 2020, consulting firm Gartner said most new BI spending is now for cloud-based projects.
  • Efforts to improve data literacy. With self-service BI broadening the use of business intelligence tools in organizations, it's critical to ensure that new users can understand and work with data. That's prompting BI teams to include data literacy skills in user training programs. BI vendors have also launched initiatives, such as the Qlik-led Data Literacy Project.

要查看或添加评论,请登录

Dr. Mahboob Ali Khan (MHM) Advisor ??的更多文章

  • Leadership Lessons From The Life Of Henry Kissinger

    Leadership Lessons From The Life Of Henry Kissinger

    For anyone over the age of 65, Henry Kissinger is likely to be an uncertain historical figure — the bespectacled old…

  • Healthcare Expertise

    Healthcare Expertise

    I guide, Facilitate execute Advise and do (ONLINE-HYBRID OR ONSITE-PART TIME -FULL TIME) consultancy Services for…

    1 条评论
  • The Rashomon effect: A Healthcare Crisis..

    The Rashomon effect: A Healthcare Crisis..

    The current crisis in the healthcare is driving significant changes in the primary care team. Witnessing this is not…

  • The price of "STRESS".

    The price of "STRESS".

    One of the consequences of living with stress is that if you do it for long enough you will probably end up with some…

  • How anxiety makes you and keeps you poor?

    How anxiety makes you and keeps you poor?

    Depression, anxiety, and other mental health concerns can cause people to struggle with low motivation and low energy…

  • Vipassana Meditation technique observing your Thoughts and Emotions

    Vipassana Meditation technique observing your Thoughts and Emotions

    Vipassana is an ancient mindfulness meditation technique. It involves observing your thoughts and emotions as they are,…

    1 条评论
  • Social Dynamics and Group Behavior

    Social Dynamics and Group Behavior

    Reality shows like Bigg Boss and Big Brother leverage several psychological principles to create engaging and often…

  • "Big Boss House" and "Organization's" .

    "Big Boss House" and "Organization's" .

    John de Mol the Dutch -Media tycoon came up with the idea of Big brother TV show during 1990s ( now as Big Boss) in a…

    1 条评论
  • What is business intelligence (BI)? A detailed guide

    What is business intelligence (BI)? A detailed guide

    What is business intelligence? Business intelligence (BI) is a technology-driven process for analyzing data and…

  • Management with Chanakya’s way: For Aspiring Project Managers

    Management with Chanakya’s way: For Aspiring Project Managers

    Uprightness, Friendliness, and Firmness of Devotion While Dealing With Others: He should be a people's man. Management…

社区洞察

其他会员也浏览了