Building a Secure, Reliable AI-Powered Text-to-SQL System Using WrenAI, LLMs, and RAG: By Fidel Vetino
Hello Everyone,
?? It's me The Mad Scientist "Fidel Vetino" living under the hood mechanically providing real solutions NOT theory. In the lab today developing a highly secure and reliable text-to-SQL system by integrating WrenAI, Large Language Models (LLMs), and Retrieval-Augmented Generation (RAG).
The system is designed to comply with stringent security standards, including HIPAA, HITRUST, NIST, SOC2, NSA, SOA, and GDPR. Within project Key components include a secure environment setup, encrypted database connections, encrypted configuration management, secure API interactions, and robust role-based access controls. Point I am making you can ensure efficient and secure database interactions for advanced natural language querying.
Let's get started:
Step 1: Setting Up the Environment
Start by ensuring that your virtual environment and dependencies are secure. Use secure practices for managing dependencies.
requirements.txt
text
wrenai==1.0.0
openai==0.10.0
psycopg2-binary==2.9.3
pyyaml==5.4.1
cryptography==3.4.7
Create and activate the virtual environment securely.
bash
# Create a virtual environment with a secure name
python3 -m venv secure_env
source secure_env/bin/activate
# Install dependencies from a secure requirements file
pip install -r requirements.txt
Step 2: Setting Up WrenAI with Secure Configuration
Store sensitive information securely using environment variables and encryption for configuration files.
secure_config.py
python
import os
from cryptography.fernet import Fernet
# Function to decrypt configuration files
def decrypt_config(encrypted_config):
key = os.environ['ENCRYPTION_KEY']
fernet = Fernet(key)
decrypted = fernet.decrypt(encrypted_config.encode()).decode()
return decrypted
# Load encrypted configuration from environment variable
encrypted_config = os.environ['ENCRYPTED_CONFIG']
config = decrypt_config(encrypted_config)
Encrypt your configuration file and store it securely.
encrypt_config.py
python
import os
from cryptography.fernet import Fernet
import yaml
# Generate a key for encryption
key = Fernet.generate_key()
print(f"Encryption Key: {key.decode()}")
# Encrypt configuration
with open('wrenai_config.yml', 'rb') as file:
config_data = file.read()
fernet = Fernet(key)
encrypted_data = fernet.encrypt(config_data)
# Store the encrypted configuration
with open('wrenai_config.enc', 'wb') as file:
file.write(encrypted_data)
Step 3: Setting Up the Database Securely
Ensure secure connections and encryption for sensitive data. Use SSL/TLS for database connections and encrypt sensitive data at rest.
Database Setup Script
领英推荐
db_setup.sql
sql
-- Enable SSL connection and encryption
ALTER SYSTEM SET ssl = on;
ALTER SYSTEM SET ssl_cert_file = '/path/to/server.crt';
ALTER SYSTEM SET ssl_key_file = '/path/to/server.key';
ALTER SYSTEM SET ssl_ca_file = '/path/to/root.crt';
SELECT pg_reload_conf();
-- Create table with encrypted column
CREATE TABLE employees (
id SERIAL PRIMARY KEY,
name VARCHAR(100),
position VARCHAR(100),
salary INTEGER,
encrypted_ssn BYTEA
);
-- Insert encrypted data example (assuming encryption is done client-side)
Client-Side Encryption Example (Python)
python
import psycopg2
from cryptography.fernet import Fernet
# Encryption key management
key = os.environ['DATA_ENCRYPTION_KEY']
fernet = Fernet(key)
# Connect to the database using SSL
conn = psycopg2.connect(
host="localhost",
port=5432,
user="your_db_user",
password="your_db_password",
dbname="your_db_name",
sslmode='require'
)
cursor = conn.cursor()
# Encrypt data before insertion
ssn = '123-45-6789'
encrypted_ssn = fernet.encrypt(ssn.encode())
cursor.execute("INSERT INTO employees (name, position, salary, encrypted_ssn) VALUES (%s, %s, %s, %s)",
('John Doe', 'Software Engineer', 90000, encrypted_ssn))
conn.commit()
conn.close()
Step 4: Integrating LLM for Text-to-SQL Securely
Ensure secure handling of API keys and data transmission to/from OpenAI API.
text_to_sql.py
python
import openai
import psycopg2
import os
from secure_config import config
# OpenAI API key
openai.api_key = os.environ['OPENAI_API_KEY']
def generate_sql_query(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=100,
headers={"Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}"}
)
return response.choices[0].text.strip()
def execute_sql_query(query):
conn = psycopg2.connect(
host=config['database']['host'],
port=config['database']['port'],
user=config['database']['user'],
password=config['database']['password'],
dbname=config['database']['dbname'],
sslmode='require'
)
cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall()
conn.close()
return result
if __name__ == "__main__":
user_input = input("Enter your query: ")
sql_query = generate_sql_query(user_input)
print("Generated SQL Query:", sql_query)
result = execute_sql_query(sql_query)
print("Query Result:", result)
Step 5: Building the Semantic Layer with Secure Configuration
Ensure the WrenAI initialization and operations adhere to security protocols.
semantic_layer.py
python
from wrenai import WrenAI
from secure_config import config
# Initialize WrenAI with secure configuration
wrenai = WrenAI(config)
# Example: Fetch metadata securely
tables = wrenai.get_tables()
for table in tables:
print(f"Table: {table.name}")
for column in table.columns:
print(f" Column: {column.name}, Type: {column.type}")
Step 6: Putting It All Together Securely
Finally, create a script that securely ties everything together, ensuring compliance with security standards.
main.py
python
import openai
import psycopg2
import os
from secure_config import config
from wrenai import WrenAI
# OpenAI API key
openai.api_key = os.environ['OPENAI_API_KEY']
# Initialize WrenAI
wrenai = WrenAI(config)
def generate_sql_query(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=100,
headers={"Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}"}
)
return response.choices[0].text.strip()
def execute_sql_query(query):
conn = psycopg2.connect(
host=config['database']['host'],
port=config['database']['port'],
user=config['database']['user'],
password=config['database']['password'],
dbname=config['database']['dbname'],
sslmode='require'
)
cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall()
conn.close()
return result
if __name__ == "__main__":
user_input = input("Enter your query: ")
sql_query = generate_sql_query(user_input)
print("Generated SQL Query:", sql_query)
result = execute_sql_query(sql_query)
print("Query Result:", result)
Additional Security Considerations
?? My Final Notes: Integrating WrenAI, LLMs, and RAG with rigorous security measures, this project showcases a robust approach to building a secure text-to-SQL system. Adhering to high-security standards ensures the protection of sensitive data and compliance with regulatory requirements. The combination of advanced AI techniques and stringent security protocols provides a reliable and efficient solution for natural language database queries, paving the way for more secure and user-friendly data access in various applications.
?? Fidel V. - Technology Innovator & Visionary ??
#AI / #AI_mindmap / #AI_ecosystem / #ai_model / #Automation / #analytics / #automotive / #aviation / #LinkedIn / #genai / #gen_ai / #LLM / #ML / #SecuringAI / #python / #machine_learning / #machinelearning / #deeplearning / #artificialintelligence / #businessintelligence / #cloud / #Mobileapplications / #SEO / #Website / #Education / #engineering / #management / #security / #blockchain / #marketingdigital / #entrepreneur / #linkedin / #lockdown / #energy / #startup / #retail / #fintech / #tecnologia / #programing / #future / #technology / #creativity / #innovation / #data / #bigdata / #datamining / #strategies /
#DataModel / #cybersecurity / #itsecurity / #facebook / #accenture / #twitter / #ibm / #dell / #intel / #emc2 / #spark / #salesforce / #Databrick / #snowflake / #SAP / #linux / #memory / #ubuntu / #apps / #software / #io / #pipeline / #florida / #tampatech / #Georgia / #atlanta / #north_carolina / #south_carolina / #personalbranding / #Jobposting / #HR / #Recruitment / #Recruiting / #Hiring / #Entrepreneurship / #moon2mars / #nasa / #Aerospace / #spacex / #mars / #orbit / #AWS / #oracle / #microsoft / #GCP / #Azure / #ERP / #spark / #walmart / #smallbusiness