Building a Scalable Real-Time Biotech Data Pipeline With Golang, Kubernetes, Kafka, and Looker..

Building a Scalable Real-Time Biotech Data Pipeline With Golang, Kubernetes, Kafka, and Looker..

It's me Mad Scientist Fidel V. longtime here to will guide you through creating a powerful, real-time data pipeline. In the biotech industry, processing and analyzing real-time data efficiently is key to accelerating research and driving innovation. A robust data pipeline that can ingest, process, and visualize large data streams in real-time enables companies to leverage insights quickly.

So, I will walks through building a real-time biotech data processing pipeline using GoLang, Kubernetes, and other cutting-edge technologies like Kafka, Flink, dbt, and Looker.


This how I, deploy each phase of the biotech app on Kubernetes, I’ll guide you through the essential coding steps for each component. Here's the approach broken down into phases:

  1. Kafka for Data Ingestion
  2. Flink for Real-Time Processing
  3. PostgreSQL for Data Storage
  4. dbt for Data Transformation
  5. API with Golang (and optional Java)
  6. Looker for Visualization
  7. Kubernetes for Deployment

Prerequisites

  • Kubernetes cluster setup (e.g., with Minikube, or a cloud provider like AWS EKS, GKE, or AKS).
  • Docker for containerizing each component.
  • kubectl for Kubernetes CLI commands.
  • Kafka, Flink, PostgreSQL, dbt, and Looker accounts and configurations as needed.

Let's dive into each step with code samples:


1. Kafka for Data Ingestion

Step 1.1: Create Dockerfile for Kafka

You can use an official Kafka image, but if you'd like a custom Dockerfile for configuration, it might look like this:

dockerfile

# Dockerfile for Kafka
FROM wurstmeister/kafka:latest

# Expose ports
EXPOSE 9092
        


Step 1.2: Kafka Deployment on Kubernetes

Create a kafka-deployment.yaml file:

yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: kafka
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kafka
  template:
    metadata:
      labels:
        app: kafka
    spec:
      containers:
      - name: kafka
        image: wurstmeister/kafka:latest
        ports:
        - containerPort: 9092
---
apiVersion: v1
kind: Service
metadata:
  name: kafka-service
spec:
  ports:
  - port: 9092
  selector:
    app: kafka
        


Apply this to Kubernetes:

bash

kubectl apply -f kafka-deployment.yaml
        

Copy code

kubectl apply -f kafka-deployment.yaml

Step 1.3: Kafka Producer in Golang

Write a Kafka producer that will simulate data. Save this as producer.go:

go

package main

import (
	"context"
	"log"
	"time"

	"github.com/segmentio/kafka-go"
)

func main() {
	writer := kafka.NewWriter(kafka.WriterConfig{
		Brokers: []string{"kafka-service:9092"},
		Topic:   "biotech-data",
	})

	for {
		err := writer.WriteMessages(context.Background(), kafka.Message{
			Key:   []byte("Key"),
			Value: []byte("Sample biological data"),
		})
		if err != nil {
			log.Fatal("Error writing message:", err)
		}
		time.Sleep(1 * time.Second)
	}
}
        

Build and push the Kafka producer to Docker, then create a Kubernetes deployment for it.


2. Flink for Real-Time Processing

Step 2.1: Flink Deployment on Kubernetes

Create a flink-deployment.yaml file:

yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: flink
spec:
  replicas: 1
  selector:
    matchLabels:
      app: flink
  template:
    metadata:
      labels:
        app: flink
    spec:
      containers:
      - name: flink
        image: flink:latest
        ports:
        - containerPort: 8081
---
apiVersion: v1
kind: Service
metadata:
  name: flink-service
spec:
  ports:
  - port: 8081
  selector:
    app: flink
        


Deploy with:

bash

kubectl apply -f flink-deployment.yaml
        


Step 2.2: Flink Job for Processing Data

This job will read from Kafka, process data, and write to PostgreSQL. You’d write this in Java or Scala and submit it to the Flink cluster.


3. PostgreSQL for Data Storage

Step 3.1: PostgreSQL Deployment

Create a postgres-deployment.yaml file:

yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: postgres
spec:
  replicas: 1
  selector:
    matchLabels:
      app: postgres
  template:
    metadata:
      labels:
        app: postgres
    spec:
      containers:
      - name: postgres
        image: postgres:latest
        env:
        - name: POSTGRES_USER
          value: "postgres"
        - name: POSTGRES_PASSWORD
          value: "password"
        - name: POSTGRES_DB
          value: "biotech"
        ports:
        - containerPort: 5432
---
apiVersion: v1
kind: Service
metadata:
  name: postgres-service
spec:
  ports:
  - port: 5432
  selector:
    app: postgres
        


Deploy with:

bash

kubectl apply -f postgres-deployment.yaml
        

4. dbt for Data Transformation


Step 4.1: dbt Configuration

In your dbt project, define models and transformations as per your data requirements.

Step 4.2: dbt Job Execution

You can run dbt commands in your local environment or create a Docker container to run scheduled dbt jobs within Kubernetes.



5. API Layer with Golang

Step 5.1: API Code in Golang

Save this as main.go:

go

package main

import (
	"encoding/json"
	"log"
	"net/http"
)

func handleData(w http.ResponseWriter, r *http.Request) {
	data := map[string]string{"message": "Real-Time Biotech Data"}
	json.NewEncoder(w).Encode(data)
}

func main() {
	http.HandleFunc("/data", handleData)
	log.Fatal(http.ListenAndServe(":8080", nil))
}
        


Step 5.2: Dockerize and Deploy Golang API

Create a Dockerfile:

dockerfile

FROM golang:1.16-alpine
WORKDIR /app
COPY . .
RUN go build -o main .
CMD ["/app/main"]
        


Create golang-api-deployment.yaml:

yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: golang-api
spec:
  replicas: 1
  selector:
    matchLabels:
      app: golang-api
  template:
    metadata:
      labels:
        app: golang-api
    spec:
      containers:
      - name: golang-api
        image: your-docker-repo/golang-api:latest
        ports:
        - containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
  name: golang-api-service
spec:
  ports:
  - port: 8080
  selector:
    app: golang-api
        


Deploy with:

bash

kubectl apply -f golang-api-deployment.yaml        

6. Looker for Visualization

Set up Looker to connect to PostgreSQL using postgres-service and visualize data through Looker’s dashboard interface.



7. Kubernetes Ingress for Access

Finally, expose the APIs and Looker dashboard using Kubernetes Ingress for easy access.

Create ingress.yaml:

yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: biotech-ingress
spec:
  rules:
  - host: your-app.com
    http:
      paths:
      - path: /api
        pathType: Prefix
        backend:
          service:
            name: golang-api-service
            port:
              number: 8080
      - path: /looker
        pathType: Prefix
        backend:
          service:
            name: looker-service
            port:
              number: 9999
        


Deploy with:

bash

kubectl apply -f ingress.yaml

#mad_scientist         

Summary

The Mad Scientist architecture leverages:

  • Golang for API development.
  • Kafka and Flink for real-time data streaming and processing.
  • dbt for data modeling and transformation.
  • Looker for data visualization.
  • Kubernetes for deployment and orchestration.

Each component can scale independently, providing a robust infrastructure for biotech data analysis and real-time insights. You can expand this to include additional features, such as machine learning models for predictive analytics, if needed.

PS. Make sure you add security measures...


Fidel V (Mad Scientist)

Chief Innovation Architect || Product Engineer? Security??AI??Systems??Cloud??Software

Space. Technology. Energy. Manufacturing.



?? The #Mad_Scientist "Fidel V. || Technology Innovator & Visionary ??








#AI / #AI_mindmap / #AI_ecosystem / #ai_model / #Space / #Technology / #Energy / #Manufacturing / #stem / #Docker / #Kubernetes / #Llama3 / #integration / #cloud / #Systems / #blockchain / #Automation / #LinkedIn / #genai / #gen_ai / #LLM / #ML / #analytics / #automotive / #aviation / #SecuringAI / #python / #machine_learning / #machinelearning / #deeplearning / #artificialintelligence / #businessintelligence / #cloud / #Mobileapplications / #SEO / #Website / #Education / #engineering / #management / #security / #android / #marketingdigital / #entrepreneur / #linkedin / #lockdown / #energy / #startup / #retail / #fintech / #tecnologia / #programing / #future / #creativity / #innovation / #data / #bigdata / #datamining / #strategies / #DataModel / #cybersecurity / #itsecurity / #facebook / #accenture / #twitter / #ibm / #dell / #intel / #emc2 / #spark / #salesforce / #Databrick / #snowflake / #SAP / #linux / #memory / #ubuntu / #apps / #software / #io / #pipeline / #florida / #tampatech / #Georgia / #atlanta / #north_carolina / #south_carolina / #personalbranding / #Jobposting / #HR / #Recruitment / #Recruiting / #Hiring / #Entrepreneurship / #moon2mars / #nasa / #Aerospace / #spacex / #mars / #orbit / #AWS / #oracle / #microsoft / #GCP / #Azure / #ERP / #spark / #walmart / #smallbusiness

Disclaimer: The views and opinions expressed in this my article are those of the Mad Scientist and do not necessarily reflect the official policy or position of any agency or organization.


要查看或添加评论,请登录