Building a Highly Resilient and Scalable System for AI/ML Models using Python(Django), PostreSQL, and ReactJS.
Brandon Opere
Founder|| Tech Researcher|| Software Engineer||Open-Source||Email address: [email protected]|
Introduction
Building a highly resilient and scalable system for implementing AI/ML models involves a well coordinated architecture that can handle significant loads, ensure data integrity, and offer seamless user interactions. In this guide, I will focus in guiding you through using tech stacks that include Python (with django for the backend), PostgreSQL (for database management) , and ReactJS (for the frontend). This stack is particularly powerful for creating robust web applications capable of deploying, managing, and interacting with machine learning algorithm models.
Let's have a dive at the System Architecture of this Application
The system of our architecture will consist of the following components:
Section 1: Setting Up the Development Environment
Installing and Configuring Django
python3 --version
pip3 --version
2. Setting Up a Virtual Environment - Create and activate a virtual environment to manage the project dependencies.
Python 3 -m venv myvenv
source myvenv/bin/activate
3. Install Django - Install Django within your environment
pip install django
4. Create a Django Project - Start a new Django Project
django - admin startproject myproject
cd myproject
5. Start a Django App - Create a new app within your Django Project
python manage.py startapp myapp.
6. Setting up PostgreSQL
CREATE DATABASE mydb;
CREATE USER myuser WITH PASSWORD 'mypassword';
ALTER ROLE myuser SET client_encoding TO 'utf8';
ALTER ROLE myuser SET default_transaction_isolation TO 'read committed';
ALTER ROLE myuser SET timezone TO 'UTC';
GRANT ALL PRIVILEGES ON DATABASES mydb TO myuser;
3. Configure Django to use PostgreSQL
In your Django Project settings ('settings.py'), configure the database settings.
DATABASES = {
'default ': {
'ENGINE': 'django.db.backends .postgresql',
'NAME': 'mydb',
'USER': 'myuser',
'PASSWORD': 'password',
'HOST':'localhost',
'PORT': '5432',
}
}
1.3. Setting up ReactJS
npm start
Section 2 : Building the Backend with Django
2.1. Designing Models and Database Schema - Define your models in Django to represent the data structure. For example, you might have models for Users. ML and Predictions.
Python Code.
#myapp/models.py
from django.db import models
class User (models.Model):
username = models.CharField(max_length=150, unique=True)
email = models.EmailField(unique= True)
password= models.CharField(max_length=128)
created_at = models.DataTimeField(auto_now_add=True)
Class MLModels (models.Model):
name = models.CharField(max_length=255)
description = models.TextField()
model_file = models.FileField(upload_to = 'models/')
created_at = models.DataTime Field(auto_now_add= True)
user = models.ForeignKey (User, on_delete= models.CASCADE)
Class Prediction(models.Model):
input_data = models.JSONField()
output _data = models.JSONField()
created_at = models.DataTimeField(auto_now_add=True)
model = models.ForeignKey(MLModel, on_delete=models.CASCADE)
user = models.ForeignKey(User, on_delete= models.CASCADE)
Run migrations to create the database schema.
Python manage.py makemigration
python manage.py migrate
2.2. Building Views and Serializers
Use Django Rest Frameworks (DRF) to build APIs for interacting with your models.
Install Django Rest Framework: pip install djangorestframework
Define Serializers - Create serializers to convert model instances to JSON
领英推荐
Code
#myapp/serializers .py
from rest_framework import serializers
from .models import User, MLModels, Prediction
class UserSerializer(serializers.ModelSerializer):
class Meta:
model = User
fields= ['id','username','email','created_at']
class MLModelSerializer(serializers.ModelSerializer):
class Meta:
model=MLModel
fields=['id','name','description','model_file','created_at','user']
class PredictionSerializer (serializers.ModelSerializer):
class Meta:
model = Prediction
fields = ['id','input_data', 'out_data', 'created_at', 'model','user']
class PredictionSerializer (serializer.ModelSerializer):
class Meta:
model=Prediction
fields = ['id' ,'input_data', 'created_at', 'model', 'user']
3. Created API Views - Use DRF viewsets to create endpoints for your models.
#myapp/views.py
from rest_framework import viewsets
from .models import User,MLModel, Prediction
from .serializers import UserSerializer, MLModelSerializer, PredictionSerializer
class UserViewSet (viewsets.ModelViewSet):
queryset=User.objects.all()
serializer_class = Userserializer
class MLModelViewSet (viewsets.ModelViewset):
queryset= MLModel.objects.all ( )
serializer_class = MLModelSerializer
class PredictionViewSet (viewsets.ModelViewSet):
queryset = Prediction.objects.all ( )
serializer_class = PredictionSerializer
4. Configure URLS
Add your API routes to the project's URLS.
#myproject/urls.py
from django.contrib import admin
from django.urls import path, include
from rest_framework.routers import DefaultRouter
from myapp import views
router = DefaultRouter( )
router.register (r 'users', views.UserViewSet)
router.register (r 'models',views.MLModelViewset)
router.register (r'predictions', views.PredictionViewSet)
urlpattern = [
path ('admin/' , admin.site.urls),
path ('api/', include (router.urls)),
]
Section 3: Building the Frontend with ReactJS
3.1. Setting Up Redux for State Management
npm install redux react-redux
2. Create Redux Store
Define actions, reducers, and the store.
#javascript
//src/store.js
import {createStore, combineReducers, applyMiddleware } from 'redux';
import thunk from 'redux-thunk';
import { composeWithDevTools} from 'redux-devtools-extension';
import userReducer from './reducers/userReducer';
import modelReducer from './reducers/predictionReducer';
const rootReducer = combineReducers ({
user : userReducer,
model: modelReducer,
prediction: predictionReducer,