Building an AI-Powered Chatbot with DeepSeek and Next.js: A Step-by-Step Guide
Waris Ahmed
Senior Shopify Developer | Next.js Developer | Front-end Web Developer | Liquid | Theme Customization
Introduction
Artificial intelligence (AI) chatbots are transforming the way businesses interact with customers. One of the most promising AI models for conversational AI is DeepSeek, known for its advanced natural language processing (NLP) capabilities. When combined with Next.js, a React-based framework, developers can create a powerful, server-optimized chatbot that provides seamless user experiences.
In this guide, we'll walk you through building an AI-powered chatbot using DeepSeek and Next.js with practical code snippets and best practices.
Prerequisites
Before we start, ensure you have the following installed:
Step 1: Setting Up a Next.js Project
First, create a new Next.js project:
npx create-next-app deepseek-chatbot
cd deepseek-chatbot
npm install axios
Next, install Tailwind CSS (optional but recommended for styling):
npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p
Configure tailwind.config.js:
module.exports = {
content: ["./pages/**/*.{js,ts,jsx,tsx}", "./components/**/*.{js,ts,jsx,tsx}"],
theme: {
extend: {},
},
plugins: [],
};
Add Tailwind to styles/globals.css:
@tailwind base;
@tailwind components;
@tailwind utilities;
Step 2: Setting Up DeepSeek API
Create a .env.local file in the root directory and add your DeepSeek API key:
NEXT_PUBLIC_DEEPSEEK_API_KEY=your_deepseek_api_key_here
Create a helper function to interact with DeepSeek API:
// utils/deepseek.js
import axios from 'axios';
const API_URL = 'https://api.deepseek.ai/chat';
const API_KEY = process.env.NEXT_PUBLIC_DEEPSEEK_API_KEY;
export const fetchResponse = async (message) => {
try {
const response = await axios.post(API_URL, {
model: 'deepseek-chat',
prompt: message,
max_tokens: 100,
}, {
headers: { 'Authorization': `Bearer ${API_KEY}` }
});
return response.data.choices[0].text;
} catch (error) {
console.error('Error fetching response:', error);
return 'Sorry, something went wrong.';
}
};
领英推荐
Step 3: Creating the Chatbot UI
Now, let's build a simple chatbot interface using React components in Next.js.
Create components/Chatbot.js:
import { useState } from 'react';
import { fetchResponse } from '../utils/deepseek';
const Chatbot = () => {
const [messages, setMessages] = useState([]);
const [input, setInput] = useState('');
const [loading, setLoading] = useState(false);
const handleSend = async () => {
if (!input.trim()) return;
setLoading(true);
const userMessage = { sender: 'user', text: input };
setMessages([...messages, userMessage]);
const botReply = await fetchResponse(input);
setMessages([...messages, userMessage, { sender: 'bot', text: botReply }]);
setInput('');
setLoading(false);
};
return (
<div className="max-w-lg mx-auto p-4 bg-white shadow-lg rounded-lg">
<div className="h-64 overflow-y-auto p-2 border-b">
{messages.map((msg, index) => (
<div key={index} className={`mb-2 text-${msg.sender === 'user' ? 'right' : 'left'}` }>
<span className={`inline-block p-2 rounded-lg ${msg.sender === 'user' ? 'bg-blue-500 text-white' : 'bg-gray-300'}`}>{msg.text}</span>
</div>
))}
</div>
<div className="flex mt-2">
<input
type="text"
value={input}
onChange={(e) => setInput(e.target.value)}
className="flex-1 p-2 border rounded-l-lg"
placeholder="Type a message..."
/>
<button onClick={handleSend} className="bg-blue-600 text-white px-4 rounded-r-lg" disabled={loading}>
{loading ? '...' : 'Send'}
</button>
</div>
</div>
);
};
export default Chatbot;
Step 4: Integrating the Chatbot in a Next.js Page
Now, integrate the chatbot into a Next.js page. Open pages/index.js and replace it with:
import Chatbot from '../components/Chatbot';
export default function Home() {
return (
<div className="min-h-screen flex items-center justify-center bg-gray-100">
<Chatbot />
</div>
);
}
Step 5: Running and Testing
Run the application:
npm run dev
Visit https://localhost:3000/ to interact with your AI chatbot powered by DeepSeek and Next.js.
Conclusion
In this guide, we built a DeepSeek-powered AI chatbot using Next.js. We covered:
? Setting up a Next.js project ? Connecting to DeepSeek API ? Creating a chatbot UI ? Integrating real-time chat functionality
This chatbot can be further improved by adding authentication, persistent storage (MongoDB/Firebase), and voice integration.
?? Next Steps: Deploy the chatbot to Vercel and enhance it with real-time streaming responses!
?? What’s Next?
Do you want to see a real-time WebSocket-based chatbot? Let me know in the comments! ??
#AIChatbot #Nextjs #DeepSeekAI #JavaScript #ReactJS #WebDevelopment #MachineLearning #ArtificialIntelligence #deepseek