Boosting API Performance with C and Python
Modern APIs often receive massive JSON or XML payloads, and processing them efficiently in Python alone can become a bottleneck. To speed things up, we can leverage C for heavy data processing while keeping Python for API interaction and database management.
Real-World Use Case
Imagine an API that receives a large financial transactions JSON payload. Before storing the data, we need to quickly compute sum, average, and standard deviation of transaction values.
Python alone might struggle with performance, so we’ll use C to handle the calculations efficiently.
1?? Writing the C Code for Data Processing
Create a file named processing.c:
#include <stdio.h>
#include <math.h>
void process_data(double *values, int size, double *sum, double *avg, double *std_dev) {
double temp_sum = 0.0, sum_of_squares = 0.0;
for (int i = 0; i < size; i++) {
temp_sum += values[i];
sum_of_squares += values[i] * values[i];
}
*sum = temp_sum;
*avg = temp_sum / size;
*std_dev = sqrt((sum_of_squares / size) - (*avg * *avg));
}
2?? Compiling the C Code
On Linux/Mac:
gcc -shared -o processing.so -fPIC processing.c -lm
On Windows:
gcc -shared -o processing.dll -fPIC processing.c -lm
3?? Building the FastAPI Server in Python
Install FastAPI and uvicorn if you haven’t already:
pip install fastapi uvicorn numpy
Now, create api.py:
import ctypes
import json
import numpy as np
from fastapi import FastAPI, Request
# Load the C library
processing_lib = ctypes.CDLL("./processing.so")
# Define function argument types
processing_lib.process_data.argtypes = [
ctypes.POINTER(ctypes.c_double),
ctypes.c_int,
ctypes.POINTER(ctypes.c_double),
ctypes.POINTER(ctypes.c_double),
ctypes.POINTER(ctypes.c_double),
]
# Create the API
app = FastAPI()
@app.post("/process/")
async def process_payload(request: Request):
# Receive JSON payload
data = await request.json()
# Extract numerical values
values = np.array([item["value"] for item in data["transactions"]], dtype=np.float64)
values_ptr = values.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
# Create variables to store results
sum_result = ctypes.c_double()
avg_result = ctypes.c_double()
std_dev_result = ctypes.c_double()
# Call the C function for fast processing
processing_lib.process_data(values_ptr, len(values),
ctypes.byref(sum_result), ctypes.byref(avg_result), ctypes.byref(std_dev_result))
return {
"total_transactions": len(values),
"sum": sum_result.value,
"average": avg_result.value,
"standard_deviation": std_dev_result.value
}
# Run the API
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
4?? Testing the API
Create a sample JSON file (payload.json):
{
"transactions": [
{"id": 1, "value": 150.75},
{"id": 2, "value": 320.10},
{"id": 3, "value": 245.80},
{"id": 4, "value": 1000.50},
{"id": 5, "value": 98.25}
]
}
Send a request using cURL or Postman:
curl -X POST "https://127.0.0.1:8000/process/" -H "Content-Type: application/json" -d @payload.json
Expected response:
{
"total_transactions": 5,
"sum": 1815.40,
"average": 363.08,
"standard_deviation": 339.14
}
Why This Works
By offloading the heavy computation to C, we:
?? Speed up data processing for high-volume APIs
?? Reduce Python’s performance bottleneck
?? Optimize financial, log analysis, and data science applications
?? What other high-performance API use cases do you want to see? Let’s talk!
#Python #CProgramming #FastAPI #HighPerformance #DataProcessing #API #SoftwareEngineering #BackendOptimization #TechInnovation