Benefits of Coding!
This week over a million students around the world will participate in the Hour of Code, an annual event designed to excite interest in computer science and computer programming. This reflects a growing interest in some quarters to promote efforts within schools to broaden awareness of what it means to 'code' (i.e. write a set of step-by-step directions that instruct computers to do something) and to help students develop related skills.
Perhaps not surprisingly, many leading technology firms have been keen proponents and supporters of this educational coding 'movement'. While such support has been particularly pronounced and high profile in the United States -- many of theprominent organizations have close ties to and/or roots in Silicon Valley -- this is long past being only a North American phenomenon.
Citing the increasing importance of coding skills, and IT jobs more broadly, to their national economies, policymakers in many countries are considering national coding education efforts of various sorts – and a few education systems have already begun to implement related initiatives. From Trinidad and Tobago to Indonesia to Nigeria, 'coding' is being introduced into classrooms and curricula around the world in various ways, both informally and (increasingly) formally as well, for better and/or for worse (depending on your perspective, and the particular nature or rigor of the specific initiatives).
This phenomenon is notably observable across Europe, where, rather famously (at least within the communities of people who care about and pay attention to such things), Estonia and the United Kingdom have introduced coding curricula for students beginning in early primary grades (the UK has actually made this mandatory – as has Slovakia, for what that’s worth). Each year in October, CodeWeek.eu serves as a continental focal point and showcase for many of these sorts of national and regional efforts. A recent report from the European Schoolnet (Computer programming and coding - Priorities, school curricula and initiatives across Europe [pdf]) features results from a survey of 21 ministries of education about their current coding-related initiatives and plans for the future. To date, 16 European countries have integrated coding into their curricula at some level (with Finland and the Flemish part of Belgium expected to do so in 2016). While the focus of most of these countries has been at the upper secondary level, coding is increasingly to be found (or soon to be found) at the primary level at a majority of these countries as well. The report highlights a number of important related pedagogical questions that are emerging out of European experience:
- How to design effectively the learning processes and outcomes involving coding?
- Which concrete activities (and programming languages) are most appropriate for different students, according to their age, interests and capacities?
- What are the particular merits (and limits) of adopting a cross-curricular approach to teaching coding or a discrete computer science subject?
- How to refine assessment, in particular where coding is integrated in a cross-curricular approach in other subjects?
It also highlights many challenges related to training and support for teachers. While many of the startups developing the tools and services that make the coding movement possible are in the United States, Europe is in many the ways at the center of actual related activities in schools.
---
“Coding”, it is said by some, is the “new literacy”. The ability to write and understand computer code, some contend, is increasingly fundamental to understanding how to navigate one’s way through, to say nothing of succeeding in, a modern society where more and more of our lives are enabled and/or constrained by the actions of devices and information systems that run on computer code.
Few would argue with the notion, I would expect, that efforts to expose some students to ‘coding’, and to develop some related skills, is a bad thing. That said:
Should *all* students learn how to code?
All? That’s ridiculous! some would answer.
All? Absolutely! others respond.
I’ve sat in on a number of related discussions in ministries of education and at education policy forums around the world. At times, it can seem like members of these two groups are not only on different pages, but reading from totally different books. Those people just don’t get it, I’ve have heard representatives from both groups lament abouteach other after the conclusion of such meetings.
For what it’s worth, and in case it might be of any interest to others, here are, in no particular order, some of the most common arguments I hear made both in support of, and against, educational coding initiatives:
1. Coding education will help students acquire vocational skills that are immediately relevant to today’s job market.
Look at all of the IT-related jobs available in the world, coding education advocates say. Shouldn’t our schools be specifically preparing our students to compete for them? Setting aside larger questions about the proper place of vocationally-oriented classes and approaches within an education system (some folks have a bit more expanded view of what ‘education’ should mean than something that is only meant to prepare the workers of tomorrow) and agreeing that some perspectives are a bit extreme (“Latest Craze for Chinese Parents: Preschool Coding Classes”), critics respond that many related efforts are a waste of time in practice for a number of reasons. These include that: (a) they focus on developing largely mechanical processes that are easily learned in other venues; (b) they are largely concerned with “job-relevant” skills of today, not tomorrow; (c) initiatives of this sort are largely driven by the business sector (a group whose motives they view with great suspicion); and (d) many current efforts have little pedagogical value in and of themselves. Often cited with particular disdain are projects purportedly about coding but which amount to little more than learning how to use basic office tools such as word processors and presentation software. Proponents counter that arguing that something shouldn’t be done in the future because it is often done badly today doesn’t always make for a winning argument, and that just because the private sector supports a particular activity in schools doesn't necessarily mean it is bad or that nefarious intentions are at play. Don’t throw out the baby with the bathwater, they respond.
2. Coding helps develop important logic and problem-solving skills.
Steve Jobs remarked that “coding teaches you how to think”. Few would argue against the notion that, when taught well, education in coding can help develop important logical thinking and problem-solving skills. Indeed, most coding education is at its very heart about logic and meant to be oriented to help people identify and solve specific problems (whether they are as basic as “have a greeting appear on the screen” or “move this turtle up and to the left” or as complex as trying model projected rainfall patterns or the transmission of a virus throughout a population). In response, critics argue that coding courses have no monopoly on the development of such skills, and that in fact such skills should be embedded throughout an entire curriculum, not the focus of a single school subject.
3. Understanding coding helps students better understand the nature of the world around them, and how and why increasing parts of it function as they do.
Computers play increasingly large roles in our lives, and so it’s important to understand how they function. There tends, I find, to be general agreement about this statement among education policymakers, although different groups nevertheless disagree on its practical relevance, given many competing priorities. That said, it is perhaps worth noting that many critics of educational coding efforts may perhaps not fully grasp the potential import of this observation. Computers don’t have minds of their own (at least not yet, anyway!), they act only according to the instructions that have been programmed into them. The price you are charged in the market, why your government or a private company thinks you might do (or not do) something, why a search result appears on your screen – such things are increasingly not directly determined by the whim or a person, but rather by an algorithm (or combination of algorithms) that someone has created. Understanding what such algorithms enable, and how, will increasingly be important to understand our increasingly digitized world. (Technology is neither good nor bad, Melvin Kranzberg noted, nor is it neutral.) Those who acknowledge the potentially profound insights that might follow from such observations may still argue that there is a very practical and immediate opportunity cost here: If you add coding to the mandatory curriculum for all students, what comes out? Some places are considering doing things like letting coding courses be used to meet foreign language or basic mathematics requirements – is this a good thing?
4. Teaching students to code can serve as a gateway to subsequent study of STEM topics -- and hopefully to jobs and careers in related fields.
Reasonable people can disagree about the exact nature and magnitude of the ‘STEM challenge’ (i.e. problems that arise because insufficient numbers of students are studying science, technology, engineering and mathematics ... a topic for another blog post, perhaps). That said, even where critics concede that such a challenge exists, they may ask: Is ‘coding’ really this really the 'best' gateway to boost general interest in STEM? If coding is not well taught, might it in fact dissuade some students from further study of STEM topics, and thus decrease the likelihood that they pursue STEM-related careers? Is coding education in schools indeed a gateway to coding, or is it in practice just 'edutainment', something to do with all the computers that schools have purchased and still haven’t figured out how to use productively -- better than nothing, to be sure, but not better than many potential alternatives?
Often related to this:
5. Introducing coding in schools can be a force for greater equity and equality of opportunity.
There can be little doubt that the tech industry suffers from a real problem related to diversity (or, more accurately, a lack of diversity). Efforts to introduce coding in schools in some places are seen as a measure that can help with this. Advocates maintain that, when coding is something that everyone does, it is no longer something just e.g. for boys, or for kids with computers at home, or for people in California or India, or who are Caucasian or Asian or ___ [feel free to insert your own stereotype and/or ‘privileged’ group]. Providing more exposure to coding for a wider variety of kids can certainly help to some extent, critics might counter, by helping to providing some initial opportunities for those who may not otherwise get them and by chipping away at some stereotypes, but the situation is rather complex, and much more needs to be done. Such critics worry that, because there are coding initiatives in schools, certain leaders will declare that the diversity challenge is being ‘solved’, or at least ‘handled’, and leave it at that. Supporting international efforts like Girls Who Code or more localized programs likeGirlsCoding (in Nigeria) is all well and good, such critics say, and certainly a good start, but it isn’t ‘solving’ the problem.
6. Being able to code enables new avenues for creativity and creative expression.
Efforts to teach coding skills to young students through the use of tools like Scratch, or as part of robotics courses or initiatives to promote “making” (and/or “physical computing”), are often cited as compelling examples of what (good) coding education efforts may comprise. Here again, many critics may laud such efforts but still argue that, even if you concede that coding is a new literacy in our increasingly technology-saturated world, it is still worth asking two rather basic questions before moving ahead with new, large-scale, mandatory educational coding initiatives in schools:
- How are we doing with the old, basic literacies of reading, writing and arithmetic?
- Shouldn’t we ensure that these fundamental “literacy skills” are in place before we start tacking new ones on to our already bloated curricula?* **Adapted from one of Michael Trucanos articles
?Founder Chairperson ~ S. N.E.W.S. Foundation ?? Closely associated with the Rural Medicare enhancement? ?? Rural communities development? ?? Upliftment of TSP area? ?? Happiness Coach? ?? Youth Mobiliser ?
9 年Thanks !!! for the wonderful post...??