Back testing system
Quant - Backtest System

Back testing system

File structure:

Root
├── docker-compose.yml
|
├── docker_backtrader
│   ├── Dockefile
│   ├── requirements.txt
│   ├── backtest
│   │   ├── Strategies
│   │   │   ├── . . . . 
│   │   ├── backtest.py
│   │   ├── GetDataFromMySQL.py
│   │   ├── Tables.py
│   
│
├── grafana
│   ├── Dockerfile
|   ├── grafana.ini
|   ├── provisioning
│   │   ├── dashboards
|   |   |   ├── dashboard.yml
│   │   ├── datasources
|   |   |   ├── datasource.yml
|   |
|   ├── dashboards
|   
├── Airflow
|   ├── config
|   ├── dags
|   ├── logs 
|   ├── plugins
|   
├── docker_airflow
|   ├── Dockerfile
|   ├── requirements.txt
| 
├── Mongo
|   ├── data
| 
├── MySql
|   ├── . . . .
|   
├── .env
├── data        

Services

in this structure we have:

  • Apache Airflow
  • Grafana
  • MySql + PhpMyAdmin
  • MongoDB + Mongo-express


services:
  postgres:
    container_name: postgres_MyProject
    image: postgres:13
     ....
     ....
      
  redis:
    container_name: redis_MyProject
    image: redis:7
     ....
     ....
      
  airflow-webserver:
    container_name: airflow_webserver_MyProject
     ....
     ....
      
  airflow-scheduler:
    container_name: airflow_scheduler_MyProject
     ....
     ....
      
  airflow-worker:
    container_name: airflow_worker_MyProject
     ....
     ....
      
  airflow-triggerer:
    container_name: airflow_triggerer_MyProject
    build:
      context: ./docker_airflow
     ....
     ....
      
# This image use in first time
  airflow-init:
    container_name: airflow_init_MyProject
     ....
     ....
      
  airflow-cli:
    container_name: airflow_cli_MyProject
     ....
     ....
      
  flower:
    container_name: flower_MyProject
     ....
     ....

  db-mongo:
    container_name: mongoDatabase_MyProject
    image: mongo:4.4
     ....
     ....
  
  mongo-express:
    container_name: mongo_express_MyProject
    image: mongo-express
     ....
     ....
  
  db-mysql:
    image: mysql:8.0
    container_name: mysql_MyProject
     ....
     ....

  phpmyadmin:
    container_name: phpmyadmin_MyProject
    depends_on:
      - db-mysql
    image: phpmyadmin
     ....
     ....
  
  grafana:
    container_name: grafana_MyProject
    build:
      context: ./grafana
     ....
     ....

  backtrader:
    container_name: backtrader_MyProject
    build:
      context: ./docker_backtrader
     ....
     ....
      
volumes:
  postgres-db-volume:
  MySql_db:
  grafana-data:
  
networks:
  main_networks:        

Step 1:

Clone a repository:


$ git clone https://github.com/sajadtaj/Docker_Airflow_Mongo_MySql_Grafana.git        

  • airflow-scheduler - The scheduler monitors all tasks and DAGs, then triggers the task instances once their dependencies are complete.
  • airflow-webserver - The webserver is available at https://localhost:8080.
  • airflow-worker - The worker that executes the tasks given by the scheduler.
  • airflow-triggerer - The triggerer runs an event loop for deferrable tasks.
  • airflow-init - The initialization service.
  • postgres - The database.
  • redis - The redis - broker that forwards messages from scheduler to worker.


Step 2:

Create some directories:

mkdir -p ./Airflow/dags ./Airflow/logs ./Airflow/plugins ./Airflow/config        
echo -e "AIRFLOW_UID=$(id -u)" > .env        

  • ../Airflow/dags - you can put your DAG files here.
  • ../Airflow/logs - contains logs from task execution and scheduler.
  • ../Airflow/config - you can add custom log parser or add airflow_local_settings.py to configure cluster policy.
  • ../Airflow/plugins - you can put your custom plugins here.

Step 3:

Change All Container name:

All container name finish by word _MyProject , Drag this word and change this for total project

Step 4:

in this project exist some password that better change (in services):

  • postgres
  • db-mongo
  • mongo-express
  • db-mysql
  • phpmyadmin


Step 5:

Initialize the database :

docker compose up airflow-init        

unfortunately Airflow dosn`t Update SqlAlchemy, then you must be careful in use sqlAlchemy class, maybe airflow dont support it:

# from sqlalchemy.orm import DeclarativeBase
# class Base(DeclarativeBase):
#         pass

# in Airflow you must use:
from sqlalchemy.orm import declarative_base
Base = declarative_base()

class BTC_USD(Base):
    __tablename__ = 'BTC_USD'
    id = Column(Integer, primary_key=True)
    Open     = Column(Float)
    High     = Column(Float)
    Low      = Column(Float)
    Close    = Column(Float)
    AdjClose = Column(Float)
    Volume   = Column(BIGINT)
    date     = Column(DateTime)

    def __repr__(self):
        return f"< BTC_USD(date='{self.date}', Close='{self.Close}')>"        


Step 6:

Set All Services in same Network: main_networks

Step 7:

if you cont clone the repo,please copy a Grafana Folder to the root of project

Step 8:

if You needs install some python packages for function in Dags (AirFlow) set the name of library in :

Root > docker_airflow > requirements.txt


and in docker-compose.yml set this address:

 airflow-triggerer:

    container_name: airflow_triggerer_MyProject

    build:

      context: ./docker_airflow #Your Address
        

Step 9:

It is so better define tags for each images in docker-compose.

Step 10:

change the database name in (Optional):

  • db-mysql

  db-mysql:
    image: mysql:8.0
    container_name: mysql_MyProject
    environment:
      - MYSQL_ROOT_PASSWORD=test
      - MYSQL_DATABASE=testDB
      - MYSQL_PASSWORD=test
        

Step 11:

in Grafana For Set MySql Database to your Dashboards use below address :

For connect Grafana to MySql :> datasourcesSet : host.docker.internal:3306


Step 12:

if clone this project for initial first database:

???????? , ??????_??????, ????????, ????????

go to Airflow > dags > Run nitialTables.py to define and create first databases

After run nitialTables.py ,tables (META , BTC_USD, AMZN, DELL) are created and fill by data from start=`2015-01-01`, end=`2024-01-01`. Dont worry,data Update automaticly done by (Airflow) Update_BTCUSD_Dag.py for first time this dag crawl all data between end=2024-01-01 and Today, and after this every day update by new data.we have :

#python
from .Update_Moduls import update_data_from_yfinance # For more Detail see Update_Moduls
from .InitialTables import Table_Name                # For more Detail see InitialTables
#!------------------+
#!   Define Updater |
#!------------------+
def Updater(**kwargs):
    for key in Table_Name:
        print(key,Table_Name[key])
        update_data_from_yfinance(symbol=key,Model_Name=Table_Name[key])

#!------------------+
#!     Define DAG   |
#!------------------+
# Define DAG parameters
default_args = {
    'owner': 'Xirano',  # Replace with your email
}
# Set DAG ID and schedule
dag = DAG(
    dag_id       = 'UpdateEveryDay',
    default_args = default_args,
    start_date   = days_ago(1),  # Adjust as needed
    schedule_interval="@daily",  # Base for cron expression
)

task = PythonOperator(
    task_id='Update Stock table',
    provide_context=True,  # Pass context to function if needed
    python_callable=Updater,
    dag=dag,
)        

  • Updater() function update our database.
  • schedule_interval="@daily" this Dag work Daily.

Step 13:

  • Backtrader Structure include :

├── docker_backtrader
│   ├── Dockefile
│   ├── requirements.txt
│   ├── backtest
│   │   ├── Strategies
│   │   │   ├──  . . . .    # Define All your Strategies Here  
│   │   ├── backtest.py
│   │   ├── GetDataFromMySQL.py
│   │   ├── Tables.py        

In This Step 13 Describe The Backtrader Structure:

1. Docker Compose Configuration (`docker-compose.yml`):

  • Define your backtrader service:

# Docker-compose.yml
services:
  backtrader:
    build: ./docker_backtrader
    volumes:  # Optional, if you need to mount host directories
      - ./data:/app/data  # Example: Mount host's "data" folder to container's "app/data"
        


  • (Optional) If using SQLAlchemy, add a MySQL service to your docker-compose.yml with configurations to connect to your MySQL database server.

2. Building the Backtrader Docker Image (Dockerfile):

  • Create a Dockerfile within the docker_backtrader directory:

# Dockerfile
FROM python:3.9 

LABEL builder    = "Xirano"
LABEL maintainer = "[email protected]"
LABEL version    = "1.00"
WORKDIR /app

COPY requirements.txt .
RUN pip install -r requirements.txt  

COPY /backtest .  

CMD ["python", "backtest.py"]        

Create a requirements.txt file in docker_backtrader listing required libraries :

  • sqlalchemy
  • pandas
  • numpy
  • matplotlib
  • backtrader

3. Implementing Data Retrieval with SQLAlchemy (docker_backtrader/backtest/GetDataFromMySQL.py ):

  • This function Get data from Data base and convert to Pandas 'DataFrame' for use in Backtrader:

#python
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
import datetime
import backtrader as bt
import pandas as pd
from Tables import Table_Name

def GetDataFromMySQl(Table:str='AMZN',Start:datetime='2023-01-01',End:datetime='2024-01-01'):

    Table = Table_Name[Table]
  
    URLS = "mysql+pymysql://root:tajedin@localhost:3306/Test_Grafana"
    engine = create_engine(URLS, echo=False)
    SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
    session = SessionLocal()  
  
    start_date = Start 
    end_date   = End
  
    query = session.query(Table)  # Use Table if defined
    query = query.filter(Table.date >= start_date, Table.date <= end_date)  # Replace if not using model
    query = query.order_by(Table.date)  # Replace if not using model

    data = query.all()
    df = pd.DataFrame([d.__dict__ for d in data])
    df = df[['date','Open','High','Low','Close','AdjClose','Volume']]
    df.set_index('date', inplace=True)
    session.close()
    return df        


4. Define DataBase Table for Reading (docker_backtrader/backtest/Tables.py ):

  • if you notice in GetDataFromMySQL.py we use from Tables import Table_Name. Table_Name, include all table that create in database.

5. Create Your Strategies (`docker_backtrader/backtest/Strategies`):

  • In this direct you must store all strategies. You can find 3 strategy in this file at first:
  • Momentum
  • Test_Strategies

6. Backtesting Script (docker_backtrader/backtest/backtest.py ):

#python
import backtrader as bt
from GetDataFromMySQL import GetDataFromMySQl
from pymongo import MongoClient
import requests
import json
from datetime import datetime, timedelta

from Stratrgies.Momentum import Momentum_Strategies
from Stratrgies.Test_Strategies import TestStrategy

class BackTest():
    def __init__(self,Table:str,Start,End,setcash,Strategy) :
        self.Table    = Table   ,
        self.Start    = Start   ,
        self.End      = End     ,
        self.setcash  = setcash ,
        self.Strategy = Strategy,
        self.cerebro = bt.Cerebro()
        self.__Analyzers(),
        self.__RunStrategy(),
  
  
    #-----------------+
    #   Run Strategy  |
    #-----------------+
    def __RunStrategy(self):
  
        data_Parsed  = bt.feeds.PandasData(
            dataname = GetDataFromMySQl(Table=self.Table[0],Start=self.Start[0],End=self.End[0] ),   # GEt Data From MySQL
            datetime = None,
            open     = 0,
            high     = 1,
            low      = 2,
            close    = 4, 
            volume   = 5,
            openinterest =-1 # Not available
            )
        self.cerebro.adddata(data_Parsed)
        self.cerebro.addstrategy(self.Strategy[0])
        self.cerebro.broker.setcash(self.setcash[0])
    #-----------------+
    #     Analyzers   |
    #-----------------+
    def __Analyzers(self):
        self.cerebro.addanalyzer(bt.analyzers.PyFolio)
        self.cerebro.addanalyzer(bt.analyzers.DrawDown)
        self.cerebro.addanalyzer(bt.analyzers.AnnualReturn)
        self.cerebro.addanalyzer(bt.analyzers.TimeDrawDown)
        self.cerebro.addanalyzer(bt.analyzers.PositionsValue)
        self.cerebro.addanalyzer(bt.analyzers.LogReturnsRolling)
        self.cerebro.addanalyzer(bt.analyzers.SharpeRatio, riskfreerate=0.03)
        self.cerebro.addanalyzer(bt.analyzers.SQN)
        self.cerebro.addanalyzer(bt.analyzers.TradeAnalyzer)
  
    #-----------------+
    #       Log       |
    #-----------------+
    def Log(self):
        print('Starting Portfolio Value: %.2f' % self.cerebro.broker.getvalue())
        self.results = self.cerebro.run()
        print('Final Portfolio Value: %.2f' % self.cerebro.broker.getvalue())
        return self.results
    #-----------------+
    #      Result     |
    #-----------------+
    def Result(self):

        strategy_instance = self.results[0] 
        # strategy_instance.cash_history
        pyfolio = self.results[0] .analyzers.getbyname('pyfolio')
        returns, positions, transactions, gross_lev = pyfolio.get_pf_items()
        drawdown = self.results[0].analyzers.drawdown.get_analysis()
        annualreturn = self.results[0].analyzers.annualreturn.get_analysis()
        TradeAnalyzer = self.results[0].analyzers.tradeanalyzer.get_analysis()
        sharperatio = self.results[0].analyzers.sharperatio.get_analysis()
  
        data_to_insert = {
            'Strategy_name' : str(self.Strategy),
            'returns'       :returns.to_json(orient='index',date_format='iso'),
            'positions'     :positions.to_json(orient='index',date_format='iso'),
            'transactions'  :transactions.to_json(orient='index',date_format='iso'),
            'drawdown'      :drawdown,
            'annualreturn'  :[(str(year), value) for year, value in annualreturn.items()],
            'TradeAnalyzer' :TradeAnalyzer,
            'sharperatio'   :sharperatio,
        }
  
        connection_string = 'mongodb://admin:pass@localhost:27017'
        client = MongoClient(connection_string)
        db = client['Strategy']
        collection = db['Result']

        result = collection.insert_one(data_to_insert)        


6-1 Backtrader Class

Backtrader Class include 4 Functions:

  • RunStrategy
  • Log
  • Analyser
  • Result

user must call and create instance of BackTest class:

#Python
instance = BackTest(
    Table    = 'META',
    Start    = '2020-01-01',
    End      = '2024-01-01',
    setcash  = 100000,
    Strategy = Momentum_Strategies
                )        
We use MongoDB, For Store the result of each strategy:

Contact

Email: [email protected]

LinkedIn: https://www.dhirubhai.net/in/sajad-taj

要查看或添加评论,请登录

社区洞察

其他会员也浏览了