Azure Synapse vs. AWS: Matching Data Analytics & Warehousing Solutions
Florent LIU
Data architect, Full Stack Data Engineer in BIG DATA, and Full Stack Developer AI.
The similar service to Azure Synapse Analytics in AWS is Amazon Redshift combined with AWS Glue and Amazon EMR.
Since Azure Synapse is a unified analytics platform combining data warehousing, big data processing (Spark), and ETL, AWS has multiple services to match its capabilities.
AWS Equivalent Services for Azure Synapse Analytics
1. Amazon Redshift (Data Warehousing)
? Similar to Synapse SQL Amazon Redshift is a cloud data warehouse optimized for running complex queries on structured data.
?? Example Use Case:
?? Example Query in Redshift:
SELECT customer_id, SUM(total_price)
FROM orders
WHERE order_date >= '2023-01-01'
GROUP BY customer_id
ORDER BY SUM(total_price) DESC;
2. Amazon EMR (Big Data Processing with Apache Spark)
? Similar to Spark in Synapse Amazon EMR (Elastic MapReduce) is a managed big data platform that can run Apache Spark, Hadoop, and Presto.
?? Example Use Case:
?? Example PySpark Code in EMR:
from pyspark.sql import SparkSession
# Create Spark Session in EMR
spark = SparkSession.builder.appName("AWS EMR Example").getOrCreate()
# Read JSON data from S3
df = spark.read.json("s3://my-bucket/data.json")
# Filter and transform data
df_filtered = df.select("id", "category").filter(df.category == "Technology")
# Save transformed data back to S3 or Redshift
df_filtered.write.format("parquet").save("s3://my-bucket/transformed-data/")
3. AWS Glue (ETL & Data Integration)
? Similar to Synapse Pipelines AWS Glue is a serverless ETL (Extract, Transform, Load) service that automates data preparation, transformation, and movement.
?? Example Use Case:
?? Example Glue ETL Job in Python:
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from awsglue.context import GlueContext
from pyspark.context import SparkContext
sc = SparkContext()
glueContext = GlueContext(sc)
# Load data from S3
df = glueContext.create_dynamic_frame.from_options(
connection_type="s3",
connection_options={"paths": ["s3://my-bucket/raw-data/"]},
format="json"
)
# Convert to Spark DataFrame and apply transformations
df_transformed = df.toDF().filter("category = 'Technology'")
# Save transformed data back to S3
df_transformed.write.parquet("s3://my-bucket/processed-data/")
4. Amazon Athena (Serverless SQL Queries on Data Lakes)
? Similar to Synapse Serverless SQL Amazon Athena is a serverless query engine that allows you to run SQL queries directly on S3 data without needing a database.
?? Example Use Case:
?? Example Athena SQL Query:
SELECT event_type, COUNT(*)
FROM "s3://my-bucket/log-data/"
WHERE event_date >= '2023-01-01'
GROUP BY event_type;
Key Differences Between Azure Synapse Analytics & AWS Services
Conclusion
Azure Synapse Analytics is an all-in-one service that combines SQL, Spark, ETL, and Data Lake processing. In AWS, you need to combine multiple services to get the same functionality:
#AI #DataScience #data #generative ai #reinforcement learning optimization #model optimization techniques #fine tuning llms
KAI KnowledgeAI Big data for small & medium enterprises Generative AI Summit Dauphine Executive Education - Paris Dauphine University-PSL Université évry Paris-Saclay
Follow me on LinkedIn: www.dhirubhai.net/comm/mynetwork/discovery-see-all?usecase=PEOPLE_FOLLOWS&followMember=florentliu