Auto-Detect Vehicle’s Number Plate Using Python

Auto-Detect Vehicle’s Number Plate Using Python

Task Description: →

?? In this task :

??Create a model that will detect a car in a live stream or video and recognize characters on the number plate of the car.

??Secondly, it will use the characters and fetch the owner's information using RTO APIs.

??Create a Web portal where all this information will be displayed (using HTML, CSS, and JS).


  1. RTO’s API Key (You can use this API by visiting?https://www.regcheck.org.uk/?and creating an account on it)

Step1?Read in image, Grayscale and Blur

No alt text provided for this image

Step 2 Apply filter and find edges for localization

No alt text provided for this image

Step 3 Find Contours and Apply Mask

No alt text provided for this image
No alt text provided for this image

Step 4 Use Easy OCR To Read?

No alt text provided for this image

Step 5 Result

No alt text provided for this image

import cv2

from matplotlib import pyplot as plt?

import numpy as np

import imutils

import easyocr

# 1. Read in image, Grayscale and Blur

img = cv2.imread('image1.jpg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

plt.imshow(cv2.cvtColor(gray, cv2.COLOR_BGR2RGB))

#2. Apply filter and find edges for localization

bfilter = cv2.bilateralFilter(gray , 11, 17, 17) #noise reduction

edged = cv2.Canny(bfilter, 30, 200) #edge detection

plt.imshow(cv2.cvtColor(edged, cv2.COLOR_BGR2RGB))

# 3. Find Contours and Apply Mask

keypoints = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

contours = imutils.grab_contours(keypoints)

contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]

location = None

for contour in contours:

??approx = cv2.approxPolyDP(contour, 10, True)

??if len(approx) == 4:

????location = approx

location

mask = np.zeros(gray.shape, np.uint8)

new_image = cv2.drawContours(mask, [location], 0, 255, -1)

new_image = cv2.bitwise_and(img, img, mask=mask)

plt.imshow(cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB))

(x,y) = np.where(mask==255)

(x1, y1) = (np.min(x), np.min(y))

(x2, y2) = (np.max(x), np.max(y))

cropped_image = gray[x1:x2+1, y1:y2+1]


plt.imshow(cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB))

# 4. Use Easy OCR To Read?

reader = easyocr.Reader(['en'])

result = reader.readtext(cropped_image)

result

# 5. Render Result

text = result[0][-2]

font = cv2.FONT_HERSHEY_SIMPLEX

res = cv2.putText(img, text=text, org=(approx[0][0][0], approx[1][0][1]+60), fontFace=font, fontScale=1, color=(0,255,-1), thickness=2, lineType=cv2.LINE_AA)

res = cv2.rectangle(img, tuple(approx[0][0]), tuple(approx[2][0]), (0,255,-1),3)

plt.imshow(cv2.cvtColor(res, cv2.COLOR_BGR2RGB))

text

#####################################################################

No alt text provided for this image

thank you!!!





要查看或添加评论,请登录

Anurag Vashishth的更多文章

社区洞察