Artificial Intelligence in Scientific Research
Dr. Heidrich Vicci
Executive / Founder at HV TECHNOLOGY GROUP, DrBA, IoT and AI Practitioner, MBA, FAU External Board Committed Member, Tech Innovation Speaker, Mentor, Coach, AIMP, DSPC, CSM, CSPO, CAL-E, CAL-T, and Six Sigma Green Belt
By Dr. Heidrich Vicci
1. Introduction
Artificial Intelligence (AI) has become a fundamental tool in scientific research. It has revolutionized the way scientists and researchers approach problems, enabling task automation and more accurate decision-making. AI offers advanced analysis and modeling capabilities, which has led to an increase in efficiency and productivity in scientific research. This paper will explore the definition of AI and its various applications in scientific research. (Flores-Cede?o et al.2024) (Villa et al.2024) (Parratt Fernández & Chaparro-Domínguez..., 2024)
1.1. Definition of Artificial Intelligence
Artificial Intelligence is a branch of computer science that focuses on developing algorithms and systems capable of mimicking certain aspects of human intelligence. These systems are capable of learning, reasoning, and making decisions based on the information they receive. AI is based on using techniques such as machine learning, natural language processing, and computer vision. They aim to create machines that can autonomously perform tasks and solve complex problems. (Gutiérrez Bejerano, 2023) (RODRíGUEZ DE LA SERNA, 2024) (Granados Ferreira, 2022)
1.2. Applications of Artificial Intelligence in scientific research
Artificial Intelligence has numerous applications in scientific research. One of these is the ability to analyze large volumes of data quickly and efficiently, allowing for the identification of patterns and trends in information. In addition, AI can be used to predict and model scientific phenomena, facilitating understanding and advancement in various fields of study. It is also used to automate repetitive tasks, freeing up time and resources for scientists to focus on more creative and complex activities. In summary, Artificial Intelligence plays a fundamental role in scientific research, improving efficiency and accuracy in data analysis and in solving scientific problems. (Díaz et al., 2022) (Rubio et al.2023) (Carbajal-Degante et al.2023)
2. Advantages of using Artificial Intelligence in scientific research
The use of Artificial Intelligence (AI) in scientific research offers numerous advantages. These include automating repetitive tasks and saving time and resources. In addition, AI makes it easier to analyze large volumes of data, leading to discoveries and patterns that would otherwise go unnoticed. Finally, AI is also useful for the prediction and modeling of scientific phenomena, allowing for more accurate and advanced studies. In short, AI offers powerful tools to improve the efficiency and scope of scientific research. (Delgado et al.2023) (Cano Bustamante & Molina Viafara, 2023) (Quinto et al.2021)
2.1. Automating repetitive tasks
One of the most important advantages of using Artificial Intelligence (AI) in scientific research is the ability to automate repetitive tasks. This allows scientists to save time and resources by not having to perform these tasks manually. For example, AI can automate data collection and classification, image analysis, or reporting. This way, researchers can focus on more creative and analytical tasks, leaving repetitive tasks in the hands of AI. (Saltos et al., 2024) (Delgado et al.2023)
2.2. Analysis of large volumes of data
Another advantage of using Artificial Intelligence (AI) in scientific research is its ability to analyze large volumes of data. With the advancement of technology, vast amounts of information have been generated that are difficult to process and analyze manually. AI offers algorithms and techniques that can efficiently handle these large data sets, identify patterns, and extract relevant insights. This allows scientists to gain valuable information more quickly and accurately, which can lead to significant advances in scientific research. (Naupay Gusukuma, 2023) (López & Martínez-Villegas, 2022) (Burgos et al., 2023)
2.3. Prediction and modelling of scientific phenomena
Artificial Intelligence (AI) also provides the ability to predict and model scientific phenomena. By using algorithms and machine learning techniques, AI can analyze historical data and establish complex relationships between variables. This makes it possible to forecast future outcomes and model what-if scenarios, thus contributing to the advancement and understanding of various scientific fields. The ability to accurately predict and model scientific phenomena helps researchers make informed decisions and improve the planning and design of scientific experiments. (Schneider, 2021) (Teigens et al., 2020) (Larson, 2022) (Scissorina2024)
3. Challenges and Limitations of Artificial Intelligence in Scientific Research
Artificial Intelligence (AI) presents several challenges and limitations in scientific research. These challenges include the need for more interpretability of AI models, making it difficult to understand how conclusions are reached. On the other hand, AI requires high-quality and labeled data to function properly, which is a challenge in obtaining and preparing the data. In addition, it is essential to consider the ethical aspects and responsibility in using AI in scientific research, which involves setting limits and ensuring its appropriate use without causing harm or discrimination. Overcoming these challenges and limitations is crucial to maximizing AI's potential in scientific research. (Escobar Mimbrera, 2021) (Sanmartín González, 2023) (Barrera Vicent, 2023) (Martén Saborío, 2023)
3.1. Lack of interpretability of AI models
One of the most prominent limitations of Artificial Intelligence (AI) in scientific research is the need for more interpretability of AI models. This is because AI models are often black boxes, meaning you don't fully understand how they make decisions or come to certain conclusions. This lack of interpretability makes it difficult to trust the results and validate the scientific findings. There is a need to develop methods and techniques to explain and understand the inner workings of AI models in the field of scientific research. (Borda2023) (Hueso and Claramunt2022) (Martén Saborío, 2023)
3.2. Need for high-quality data and labeling
Artificial Intelligence (AI) in scientific research requires high-quality, labeled data to function effectively. This implies that the data must be accurate, complete, and representative of the phenomenon or problem being studied. In addition, the data needs to be labeled appropriately, i.e., a correct class or category has been assigned to each data instance. Obtaining and preparing this data can be challenging, requiring meticulous selection, cleaning, and labeling. However, having high-quality, labeled data is critical to obtaining reliable and accurate results using AI in scientific research. (Huang, 2024) (Vega et al.2020) (Gudi?o, 2023)
3.3. Ethics and responsibility in the use of Artificial Intelligence in scientific research
Artificial Intelligence (AI) raises important ethical questions and responsibilities in its use in scientific research. It is imperative to consider the impact and consequence of the outcomes generated by AI systems, as they can influence decision-making and society at large. It is essential to establish strong ethical principles and responsibility in the design, development and use of AI in scientific research, avoiding any discrimination, prejudice or bias. In addition, privacy and data protection need to be taken into account at all times to ensure the responsible use of AI in scientific research. (Gua?a-Moya & Chipuxi-Fajardo, 2023) (Orozco, 2022) (Herrera et al., 2020)
References:
Flores-Cede?o, P. R., Zambrano-Pilay, E. C., & Chiriboga-Mendoza, F. R. (2024). Seguridad informática e inteligencia artificial en la investigación científica. Revista Científica INGENIAR: Ingeniería, Tecnología e Investigación. ISSN: 2737-6249., 7(13 Ed. esp.), 2-10. journalingeniar.org
Villa, R. N. C., Ramírez, S. M. A., & Hernández, B. L. M. (2024). Transformando la Educación en México:: La Inteligencia Artificial como Motor para el Desarrollo de Competencias. Desarrollo sustentable, Negocios, Emprendimiento y Educación, 6(52), 1-10. eumed.net
Parratt Fernández, S., Chaparro-Domínguez, M. á., & Martín-Sánchez, I. M. (2024). Cobertura mediática de la inteligencia artificial periodística en Espa?a: relevancia, temas y framing. ua.es
Gutiérrez Bejerano, S. (2023). La inteligencia artificial y su impacto en los gobiernos y sociedad actuales. uva.es
RODRíGUEZ DE LA SERNA, A. (2024). La inteligencia artificial en el campo de la medicina asistencial.. Dolor. [HTML]
领英推荐
Granados Ferreira, J. (2022). Análisis de la inteligencia artificial en las relaciones laborales. Revista CES Derecho. scielo.org.co
Díaz, J. P., Siles, I. S., Contreras, E. P., & Sánchez, A. (2022). Aplicación de técnicas de inteligencia artificial para reconocimiento facial en sistemas de seguridad en ambientes de intranet. Mare Ingenii. sanmateo.edu.co
Rubio, P. V., González, G. P. B., Salcán, A. C. Q., & Yedra, H. M. C. (2023). La inteligencia artificial en la educación superior: un enfoque transformador. Polo del Conocimiento: Revista científico-profesional, 8(11), 67-80. unirioja.es
Carbajal-Degante, E., Gutiérrez, M. H., & Sánchez-Mendiola, M. (2023). Hacia revisiones de la literatura más eficientes potenciadas por inteligencia artificial. Investigación en educación médica, 12(47), 111-119. medigraphic.com
Delgado, R. D. P. G., Sánchez, A. G., Reyes-Palau, N. C., Tapia-Sosa, E. V., & Moposita, S. F. S. (2023). Educación 4.0: Enfoque innovador apoyado en la inteligencia artificial para la educación superior. Universidad y Sociedad, 15(6), 60-74. ucf.edu.cu
Cano Bustamante, E. & Molina Viafara, S. M. (2023). Cómo la inteligencia artificial impulsa la eficiencia y la productividad en la alta gerencia. unilibre.edu.co
Quinto, N. M. D., Villodas, A. J. C., Montero, C. P. C., Cueva, D. L. E., & Vera, S. A. N. (2021). La inteligencia artificial y la toma de decisiones gerenciales. Revista de Investigación Valor Agregado, 8(1), 52-69. upeu.edu.pe
Saltos, J. E. R., Bloisse, S. Y. T., Yavar, H. L., & Piguave, W. G. V. (2024). Inteligencia Artificial. La nueva transformación de la administración empresarial. RECIAMUC. reciamuc.com
Naupay Gusukuma, A. M. (2023). Habilidades investigativas universitarias aplicadas a través de la inteligencia artificial, 2023. ucv.edu.pe
López, J. F. C. & Martínez-Villegas, T. (2022). La inteligencia artificial en las publicaciones científicas. Cirugía de Mano y Microcirugía. latinjournal.org
Burgos, L. M., Suárez, L. L., & Benzadón, M. (2023). Inteligencia artificial ChatGPT y su utilidad en la investigación: el futuro ya está aquí. MEDICINA (Buenos Aires). scielo.org.ar
Schneider, S. (2021). Inteligencia Artificial: una exploración filosófica sobre el futuro de la mente y la conciencia. [HTML]
Teigens, V., Skalfist, P., & Mikelsten, D. (2020). Inteligencia artificial: la cuarta revolución industrial. [HTML]
Larson, E. J. (2022). El mito de la inteligencia artificial: Por qué las máquinas no pueden pensar como nosotros lo hacemos. udllibros.com
Tijerina, A. B. N. (2024). La relación entre los seres humanos y la inteligencia artificial. Consecuencias humanas de una revolución tecnológica, 333. researchgate.net
Escobar Mimbrera, á (2021). Métricas y guías para el desarrollo de algoritmos de Inteligencia Artificial Explicable. ujaen.es
Sanmartín González, M. (2023). Aplicación de un análisis de interpretabilidad de modelos de machine learning aplicado a la gestión de riesgos.. comillas.edu
Barrera Vicent, A. (2023). Una aproximación matemática a la Inteligencia Artificial Explicable. us.es
Martén Saborío, S. (2023). El problema epistemológico de los Big Data en la producción de conocimiento científico. ucr.ac.cr
Borda, X. (2023). Desafíos y oportunidades de la Inteligencia Artificial en la Educación Superior. Fides et Ratio-Revista de Difusión cultural y científica de la Universidad La Salle en Bolivia, 26(26), 18-18. scielo.org.bo
Hueso, L. C., & Claramunt, C. (2022). Transparencia y explicabilidad de la inteligencia artificial y “compa?ía”(comunicación, interpretabilidad, inteligibilidad, auditabilidad, testabilidad, comprobabilidad, simulabilidad…). Para qué, para quién y cuánta. In Transparencia y explicabilidad de la inteligencia artificial (pp. 29-70). Tirant Lo Blanch. uv.es
Huang, K. (2024). Estudio bibliográfico sobre la aplicación en inteligencia artificial y análisis de big data a gestión de calidad de proyectos de ingeniería civil. upv.es
Vega, M. á., Mora, L. M. Q., & Badilla, M. V. C. (2020). Inteligencia artificial y aprendizaje automático en medicina. Revista médica sinergia, 5(8), e557-e557. revistamedicasinergia.com
Gudi?o, J. B. (2023). Inteligencia artificial como elemento transformador de la investigación científica. Entrelíneas. ambientevirtualuea.org
Gua?a-Moya, J. & Chipuxi-Fajardo, L. (2023). Impacto de la inteligencia artificial en la ética y la privacidad de los datos. RECIAMUC. reciamuc.com
Orozco, H. (2022). La ética en la investigación científica: consideraciones desde el área educativa. Perspectivas. unermb.web.ve
Herrera, J., Vásquez, M. C., & Ochoa, E. (2020). La evolución de la responsabilidad social empresarial a través de las teorías organizacionales. Visión de futuro. scielo.org.ar
?