Approaching unity from relativity instead of quanta -- 5
The neutron: strong force among quarks

Approaching unity from relativity instead of quanta -- 5

6. Isolated particles, and the strong force

 For an isolated spinning particle the force maintaining particle integrity is either 

     Fg = ((G (m/2) (m/2)) / (h/mc)^2 ) 

                              (((1 - v^2/c^2)^-1/2 -1) + (v^2/c^2)(1 - v^2/c^2)^-3/2) 

or                Fg = ((G (m/2) (m/2)) / (h/mc)^2)

                              (1.3 (1 - v^2/c^2)^-3/2)       v -->c  (lemma)

from Section 4 where the velocity term in the reduced version overlaps that in the original expression in a plot at v -->c. The distance term is from (8a).  Combining the above and (17),

                   Fg,n = ((n/2)^1/2 Ag^-1/2 + (n/2)^3/2 Ag^-3/2) 

                                   ((Gc^2)/4h^2) m^4                              (18)


or                    Fg,n = (n/2)^3/2 (0.058) (c^7/Gh)^1/2 m.                   (18a)

If m is that of Equation (11), 

                    Fg,1 = ((1/2)^1/2 Ag^-1/2 + (1/2)^3/2 Ag^-3/2)

                                    (1/4) ((G^2 Hc^4) / h^4)^1/3                   (18b)


or             Fg,1 = 0.021(c^17 h H^2 / G^5)^1/6          (prediction)           (18c)

the force perhaps providing quark integrity, and the Strong force.

No alt text provided for this image

[Strong force among nucleons illustrated, so that the same force among quarks reaches other members of the atomic nucleus.]

7. The unit charge

In a given charged particle let

                            Fg,1  ~ > Fcoulomb      (lemma)

In Equation (18) when m is the Planck mass and n = 1, and r1 is h/mc from Equation (8a), the charge, q, of the above is about the unit charge, 

                         10^-18 > q > e,                 (proof)

also substantiating Section 6.  

(to be continued)

要查看或添加评论,请登录

Warren Frisina的更多文章

社区洞察

其他会员也浏览了