AI in Marketing: Something new, or old AF*?
*Analytic Functionality (What else did you think it meant?)
Marketers, being marketers, are always looking to invent new names for their products to make those products seem better than previous iterations.
This is most common when the need for new product cycles outpaces companies’ ability to produce significant new features or advances. For an excellent example, take a look at what’s been happening in the analytics space for the past 25 years.
Twenty-five years ago, reporting and analytics were the two primary categories for how companies leveraged data. Reporting was about putting critical data into useful formats, while analytics was the process of forecasting and predicting the future based on the analysis performed on the data contained in reports. This basic division has not really changed in the two and a half decades since, but the terminology certainly has.
Analytics became “advanced analytics,” followed by “data mining,” “modeling” and “predictive modeling.” These were all iterations on the same concept: using data to obtain a prediction of the future to a relatively high degree of certainty.
After “predictive modeling,” one of the more recent terms that evolved was “machine learning.” This, in a way, was somewhat differentiated from its predecessors because it added an element of automation around the modeling process in analytics. Today, “machine learning” has mostly become “artificial intelligence” (AI). The term even became a core theme for advertising at this year’s annual conference for the Direct Marketing Association.
What characterizes AI, in the context of the marketing and advertising technology industry? Is it an automated, “real-time” process of analytics or is it data modeling to generate predictions? To summarize, it’s the most recent iteration of machine learning, which is just an automated version of what was once known as analytics.
Today, so-called AI is used to predict the likelihood that a given marketing tactic will produce a certain outcome, and that the amount spent on that tactic will produce more conversions. Essentially, AI exists to tilt the odds in the marketers’ favor when planning campaigns.
But is this really artificial intelligence? Do the algorithms that produce marketing predictions possess an intelligence that allows them to operate in a way that mimics human thinking? Not exactly.
No matter how many layers of automation it’s wrapped in or how accurate the algorithms become, statistical analysis will never be artificial intelligence. True intelligence is a layer of comprehension and understanding that goes on top of the various statistical algorithms used by marketers and data analysts in many other industries on a daily basis.
What analytics platform could have predicted the breakout success of Pokémon Go? What human could have, for that matter? Human nature is still ultimately unpredictable in a way that data analysis cannot accurately account for. While so-called intelligent algorithms can make feasible the large-scale arbitrage models that are so common in digital marketing, it is possible to predict approximately how many sales will take place out of a given number of impressions, for example. The intuition that guides marketing implementation is unique to humans.
This is not to understate the power of current data analytics models. While it is true that the general concept has not changed over the past 15 years – we still often use aggregated data to make predictions – the capacity and degree of automation has grown exponentially. It’s a testament to the power of these systems that they can even be called “artificial intelligence” with any degree of credibility. It is amazing that a platform can ingest literally billions of data points and accurately predict outcomes that drive true business results, and perhaps we have not yet come up with the right term that truly captures that phenomenon. Hence, we rely on “artificial intelligence.”
As data analytics platforms become even more automated and accurate, it is a near certainty that a clever marketer will come up with a bigger and better term than “artificial intelligence” to describe the next generation. This will not change the underlying reality that the same statistical algorithms are still at the heart of any predictive technology. I guess the true “arms race” is in marketing terminology and not in mathematics.
True “artificial intelligence” will, unfortunately for those employed in the marketing industry, only emerge when technology is capable of replacing the humans who ingest data from a wide variety of sources and orchestrate marketing programs using a combination of intellect and intuition. In that respect, we should perhaps hope that the advent of truly intelligent software takes place later rather than sooner.
This article was written by Mark Smith and recently published in AdExchanger - https://adexchanger.com/data-driven-thinking/artificial-intelligence-marketing-arms-race/
Follow KiteWheel (@Kitewheel) and AdExchanger (@adexchanger) on Twitter.
Good stuff Mark-well done!
Group Enterprise Architect
8 年Thanks Mark Smith. Good article. Probably the key takeaway is for organisations to focus on their business questions, and not get distracted by hype. I like this article too, complementing Mark's take with some useful historical perspective: https://www.forbes.com/sites/bernardmarr/2016/02/19/a-short-history-of-machine-learning-every-manager-should-read/#826c58b323ff