5 Key Steps to Creating a Data Management Strategy

5 Key Steps to Creating a Data Management Strategy

What is a data management strategy?

Put simply, a data management strategy is an organization’s roadmap for using data to achieve its goals. This roadmap ensures that all the activities surrounding data management—from collection to collaboration—work together effectively and efficiently to be as useful as possible and easy to govern. With a data management strategy in place, your company can avoid some of these common data challenges:

  • Incompatible, duplicate, or missing data from undocumented or inconsistently documented sources
  • Siloed projects that use the same data, yet duplicate the efforts and costs associated with that data
  • Data activities that consume time and resources but do not contribute to overall business objectives

A data management strategy will be the strong foundation needed for consistent project approaches, successful integration, and business growth.

?

5 steps to an effective data management strategy

If your company faces these kinds of challenges, it’s time to develop an enterprise data management strategy. Fine-tuning and finalizing a strategy that works best for your business will take time, but you can start with these five steps.

1. Identify business objectives

Your organization creates billions of data points per day. If you don’t let your business objectives inform your data management strategy, you could waste valuable time and resources collecting, storing, and analyzing the wrong types of data. It is usually helpful to ask questions like:

  • What are your organization’s overall objectives?
  • What data is needed to meet these objectives?
  • What types of insights and information are required to make progress against these initiatives?

Focus on the three to five most critical use cases for your company’s data and build your strategy from there. With your business objective at top of mind, these priorities will help determine processes, tools, governance, and more.

?

2. Create strong data processes

Now that you know how you will use your data, it’s time to think through the processes in place for collecting, preparing, storing, and distributing the data. Begin by identifying the owners and stakeholders for each of the following data management activities. The questions below are a great place to start as you consider each step of the process.

Collect

?

  • What will be your data sources?
  • Will you need access to both external and internal assets?
  • Do you need structured data, unstructured data, or a combination of both?
  • How will the data be collected?
  • Is this a task that will be done manually as needed or will you set up extract scheduling?

?

Prepare

?

  • How will you clean and transform raw data to prepare it for analysis?
  • How will you identify incomplete or disparate data?
  • What will be the guidelines for naming data, documenting lineage, and adding metadata to increase discoverability?

?

Store

?

  • Where will you store your data?
  • Will you use XML, CSV, or relational databases for structured data?
  • Do you need a data lake for unstructured data?
  • How will you keep your data secure?

?

Analyze and Distribute

?

  • Which teams or departments need the ability to collaborate?
  • How can you make access to data and analysis easier for the end-user?
  • How will you communicate any data insights
  • 3. Find the right technology

As you work through the questions above, you might find that identifying the right tools or platforms or technology solutions is essential to building a data management strategy. Think carefully about what hardware or software you need to establish a strong data infrastructure. The Tableau Data Management Add-on helps companies manage the data within their existing analytics environment, streamlining the process so people get the information they need when and where they need it—directly in the flow of their analysis. From data preparation to cataloging, search, and governance, the Data Management Add-on helps ensure that trusted and up-to-date data is always used to drive business decisions.

4. Establish data governance

The increased use of data and the growth of your data infrastructure brings not only big benefits but also a big responsibility. Don’t skimp when it comes to establishing data governance, and take the time to create and communicate policies and procedures for proper data usage. Some themes to explore:

  • Data quality: How are you ensuring that data is accurate, complete, and current?
  • Data security: What steps are you taking to securely store data?
  • Data privacy: Do you have permission to collect and use data?
  • Data transparency: How do you foster an ethical data environment?

Data governance ensures that data is used correctly and consistently across the organization, so policies and procedures should not only be communicated and understood by owners and stakeholders, but by everyone in the company. This is a great step in fostering an organization-wide data culture.

?

5. Train and execute

Sometimes the biggest challenge in using data effectively is that the organization’s data owners are not data experts. A critical part of your data management strategy will be to provide the knowledge and skills your team needs to analyze and understand the data. This could mean putting data analysis tools in the hands of departments outside of IT or getting buy-in from your organization’s leadership so they’re ready to support your data initiatives. Whatever this looks like, make sure everyone understands the company’s data management strategy and how to successfully execute their role.

要查看或添加评论,请登录

Vanshika Munshi的更多文章

  • Key Data Engineer Skills and Responsibilities

    Key Data Engineer Skills and Responsibilities

    Over time, there has been a significant transformation in the realm of data and its associated domains. Initially, the…

  • What Is Financial Planning? Definition, Meaning and Purpose

    What Is Financial Planning? Definition, Meaning and Purpose

    Financial planning is the process of taking a comprehensive look at your financial situation and building a specific…

  • What is Power BI?

    What is Power BI?

    The parts of Power BI Power BI consists of several elements that all work together, starting with these three basics: A…

  • Abinitio Graphs

    Abinitio Graphs

    Graph Concept Graph : A graph is a data flow diagram that defines the various processing stages of a task and the…

  • Abinitio Interview Questions

    Abinitio Interview Questions

    1. What is Ab Initio? Ab Initio is a robust data processing and analysis tool used for ETL (Extract, Transform, Load)…

  • Big Query

    Big Query

    BigQuery is a managed, serverless data warehouse product by Google, offering scalable analysis over large quantities of…

  • Responsibilities of Abinitio Developer

    Responsibilities of Abinitio Developer

    Job Description Project Role : Application Developer Project Role Description : Design, build and configure…

  • Abinitio Developer

    Abinitio Developer

    Responsibilities Monitor and Support existing production data pipelines developed in AB Initio Analysis of highly…

  • Data Engineer

    Data Engineer

    Data engineering is the practice of designing and building systems for collecting, storing, and analysing data at…

  • Pyspark

    Pyspark

    What is PySpark? Apache Spark is written in Scala programming language. PySpark has been released in order to support…

社区洞察

其他会员也浏览了