#3 The Beginning of Data Company Era

#3 The Beginning of Data Company Era

Every company now in 2017 is a data company. That's right. Given the profusion of data and information available, it is impossible to deny that each business becomes a data-driven enterprise. Just as in the 1990s every company was focused on website development and in the 2000s in software development, in the next ten years we will make a breakthrough in the intelligent use of data.

In the last two years, the evolution of the generation of data was not precedent, in the same way, the process of these data, increased considerably, with equivalent reduction in costs. This reality is forcing companies to a new behavior, data driven business. This new scenario requires new competencies of managers and employees. Mastering business data science. For this to occur, we need to understand that artificial intelligence and the art of storytelling through data can be a new asset for gaining competitiveness.

The best way to anticipate is to consistently put the big-time philosophy among all employees. Automation and increased power analysis should be priorities for the next few years of management. Every collaborator must know how to work with algorithms and develop data science projects. There is a lot of knowledge accumulated by universities and research centers that can help with this task, we just need to open that box and let new ways of looking at the world happen.

要查看或添加评论,请登录

Geanderson Lenz的更多文章

  • Redefining Microservices with AI Agents

    Redefining Microservices with AI Agents

    Microservices represent a revolutionary software development architecture that emerged as a response to the limitations…

    1 条评论
  • A Era dos Multi-Agentes: O Futuro da IA Após o GPT

    A Era dos Multi-Agentes: O Futuro da IA Após o GPT

    O avan?o recente de modelos de linguagem como o GPT tem impulsionado o surgimento de sistemas de multi-agentes, mudando…

  • The 6 Roadblocks to Production: Challenges of Putting Generative AI into Action

    The 6 Roadblocks to Production: Challenges of Putting Generative AI into Action

    Generative AI, the technology behind dazzling text-to-image tools and eerily realistic deepfakes, promises to…

  • The Rise of Platform Engineering

    The Rise of Platform Engineering

    Platform engineering has emerged as a crucial discipline in the modern software development landscape, driven by the…

  • Como Iniciar uma Jornada de Transforma??o?

    Como Iniciar uma Jornada de Transforma??o?

    Um dos pontos mais sensíveis em uma empresa é come?ar uma mudan?a acentuada de rumo. Imagine comigo o seguinte cenário:…

  • Desafios de Big Data Petrobras Startups

    Desafios de Big Data Petrobras Startups

    Desafios e Big Data, Analytics, Machine Learning e IA do edital Desafio Petrobras para Startups em 2020: - Estrutura??o…

  • Guia de Ferramentas de Data Integration 2020

    Guia de Ferramentas de Data Integration 2020

    Uma das maioress dores que tenho como profissional de dados é a integra??o, movimenta??o e transforma??o de inúmeras…

  • Stakeholder Capitalism and Data Driven Strategies

    Stakeholder Capitalism and Data Driven Strategies

    At the last world economic forum in Davos, a group of CEOs debated the topic of Stakeholder Capitalism. Although the…

  • Está em Dúvida? Monte uma Startup!

    Está em Dúvida? Monte uma Startup!

    Nas conversas que tenho com pessoas dos diversos setores e idades, a dúvida sempre é a mesma: para onde as coisas est?o…

    1 条评论
  • #8 DataOps Tips: Databricks Delta Lake

    #8 DataOps Tips: Databricks Delta Lake

    "Delta Lake é uma camada de armazenamento de código aberto que traz confiabilidade aos lagos de dados. O Delta Lake…

社区洞察

其他会员也浏览了