2024 LangChian Guide|How to use output parsers to structure large language models responses
Output Parsers in LangChain are like handy organizers for the stuff language models say. They're like the magic translators that turn the model's raw text responses into something more useful, like organized data in JSON, Python-friendly classes, or neat rows for databases.
So, where do they shine?
Output parsers pull double duty:
When is it the right time to bring in the parsers?
Output parsers are your go-to helpers when:
In simple terms, Output Parsers are the cool organizers that make sure the language model's responses are not just talk but talk that makes sense and fits your application's style.
Types of Output Parsers in LangChain
LangChain offers various types of output parsers. Here are a few examples:
领英推荐
from langchain.parsers import StructuredOutputParser
# Example raw text response
raw_text_response = "name: John Doe, address: 123 Main St, datetime: 2024-02-07T15:30:00+00:00"
# Define the structured output schema, focusing only on extracting datetime
schema = {"datetime": str}
# Create an instance of Structured Output Parser
structured_parser = StructuredOutputParser(schema)
# Use the Output Parser to parse the text response into structured data, extracting only datetime
parsed_data = structured_parser.parse(raw_text_response)
# Output the parsed structured data
print(parsed_data)
# Output: {'datetime': '2024-02-07T15:30:00+00:00'}
from langchain.parsers import DateTimeParser
raw_datetime = "2024-02-07 15:30:00"
datetime_parser = DateTimeParser()
parsed_datetime = datetime_parser.parse(raw_datetime)
print(parsed_datetime) # Output: 2024-02-07 15:30:00
from langchain.parsers import EnumParser
enum_data = "option2"
enum_values = ["option1", "option2", "option3"]
enum_parser = EnumParser(enum_values)
parsed_enum = enum_parser.parse(enum_data)
print(parsed_enum) # Output: "option2"
from langchain.parsers import RetryParser
def custom_parser(data):
# Example: Trying to parse an integer; might fail initially
try:
result = int(data)
return result
except ValueError:
raise ValueError("Failed to parse as integer")
retry_parser = RetryParser(max_attempts=3)
parsed_data = retry_parser.parse_with_retry("123abc", custom_parser)
print(parsed_data) # Output: 123
from langchain.parsers import AutoFixingParser
def auto_fix(data):
# Example: Attempt to fix a string by removing non-alphabetic characters
fixed_data = ''.join(char for char in data if char.isalpha())
return fixed_data
autofix_parser = AutoFixingParser(auto_fix)
parsed_data = autofix_parser.parse_and_fix("ABC123!@#")
print(parsed_data) # Output: "ABC"
???????????????? ???????????????????? ???????? ???????????????????? (??????)
1 年Thanks for sharing! Here‘s a list with ?????? (!) ???????? ?????????????? ???? #???? from #Harvard, #Stanford, #MIT, #OpenAI, #Google, & many more top universities & big tech companies. Please check out my post for more information including the download link: https://www.dhirubhai.net/posts/markus-wimmer_ai-ai-freecourses-activity-7160953673760587778-WOLI