2023-10-19 THU. Advances in Biomedical Sciences (No. 20)

The 20th LinkedIn professional introduction concerning the advances in biomedical sciences is here to help readers. This issue comprises 20 topics, containing a total of 100 selected papers. Advances in both basic research and clinical research are introduced. Papers in this introduction are selected for the purpose that the readers can better understand relevant research fields.

Outline

Part 1. Pyroptosis

Part 2. Pyroptosis and COVID-19

Part 3. Oxidative stress and atherosclerosis

Part 4. Phosphatase and Tensin Homolog (PTEN)

Part 5. Synaptic Plasticity

Part 6. Long-Term Potentiation (LTP)

Part 7. Learning and Memory

Part 8. Alzheimer’s Disease (AD)

Part 9. Parkinson’s Disease (PD)

Part 10. Heart Failure

Part 11. Coenzyme Q10 (Q10)

Part 12. Nicotinamide adenine dinucleotide (NAD+) and Nicotinamide mononucleotide (NMN)?

Part 13 Histone acetylation

Part 14. RNA splicing

Part 15. Protein degradation

Part 16. Metformin

Part 17. Breast Cancer

Part 18. Mitogen-Activated Protein Kinase (MAPK)

Part 19. Trauma

Part 20. Narcolepsy


Contents

Part One: Pyroptosis

1. Wei Y, Lan B, Zheng T, Yang L, Zhang X, Cheng L, Tuerhongjiang G, Yuan Z, Wu Y (2023) GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis. Nat Commun. 14(1):929. PMID:36807553. DOI:10.1038/s41467-023-36614-w. PMCID: PMC9938904. https://pubmed.ncbi.nlm.nih.gov/36807553/

2. Ouyang X, Zhou J, Lin L, Zhang Z, Luo S, Hu D (2023) Pyroptosis, inflammasome, and gasdermins in tumor immunity. Innate Immun. 29(1-2):3-13. PMID:36632024.? DOI:10.1177/17534259221143216. PMCID:PMC10164276. https://pubmed.ncbi.nlm.nih.gov/36632024/

3. Tang L, Lu C, Zheng G, Burgering BM (2020) Emerging insights on the role of gasdermins in infection and inflammatory diseases. Clin Transl Immunology. 9(10):e1186. DOI:10.1002/cti2.1186. PMID:33033617. PMCID:PMC7533414. https://pubmed.ncbi.nlm.nih.gov/33033617/

4. Lin J, Sun S, Zhao K, Gao F, Wang R, Li Q, Zhou Y, Zhang J, Li Y, Wang X, Du L, Wang S, Li Z, Lu H, Lan Y, Song D, Guo W, Chen Y, Gao F, Zhao Y, Fan R, Guan J, He W (2023) Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity. Nat Commun. 14(1):224. PMID:36641456. DOI:10.1038/s41467-023-35917-2. PMCID:PMC9840172.? https://pubmed.ncbi.nlm.nih.gov/36641456/

5. Dubyak GR, Miller BA, Pearlman E (2023) Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev. 314(1):229-249. PMID:36656082. DOI:10.1111/imr.13186. PMCID:PMC10407921. https://pubmed.ncbi.nlm.nih.gov/36656082/

Part Two: Pyroptosis and COVID-19

1. Peleman C, Van Coillie S, Ligthart S, Choi SM, De Waele J, Depuydt P, Benoit D, Schaubroeck H, Francque SM, Dams K, Jacobs R, Robert D, Roelandt R, Seurinck R, Saeys Y, Rajapurkar M, Jorens PG, Hoste E, Vanden Berghe T (2023) Ferroptosis and pyroptosis signatures in critical COVID-19 patients. Cell Death Differ.30(9):2066-2077. PMID:37582864. DOI:10.1038/s41418-023-01204-2. PMCID:PMC10482958. https://pubmed.ncbi.nlm.nih.gov/37582864/

2. Xu Q, Yang Y, Zhang X, Cai JJ (2022) Association of pyroptosis and severeness of COVID-19 as revealed by integrated single-cell transcriptome data analysis. Immunoinformatics (Amst). 6:100013. DOI:10.1016/j.immuno.2022.100013. PMID:35434695; PMCID:PMC8994680. https://pubmed.ncbi.nlm.nih.gov/35434695/

3. Sun X, Liu Y, Huang Z, Xu W, Hu W, Yi L, Liu Z, Chan H, Zeng J, Liu X, Chen H, Yu J, Chan FKL, Ng SC, Wong SH, Wang MH, Gin T, Joynt GM, Hui DSC, Zou X, Shu Y, Cheng CHK, Fang S, Luo H, Lu J, Chan MTV, Zhang L, Wu WKK (2022) SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1. Cell Death Differ. 29(6):1240-1254. PMID:34997207.? DOI:10.1038/s41418-021-00916-7. PMCID:PMC9177730. https://pubmed.ncbi.nlm.nih.gov/34997207/

4. Schifanella L, Anderson J, Wieking G, Southern PJ, Antinori S, Galli M, Corbellino M, Lai A, Klatt N, Schacker TW, Haase AT (2023) The defenders of the alveolus succumb in COVID-19 pneumonia to SARS-CoV-2 and necroptosis, Pyroptosis, and PANoptosis. J Infect Dis. 227(11):1245-1254. PMID:36869698. DOI:10.1093/infdis/jiad056. PMCID:PMC10226656.4. https://pubmed.ncbi.nlm.nih.gov/36869698/

5. Pu Z, Sui B, Wang X, Wang W, Li L, Xie H (2023) The effects and mechanisms of the anti-COVID-19 traditional Chinese medicine, Dehydroandrographolide from Andrographis paniculata (Burm.f.) Wall, on acute lung injury by the inhibition of NLRP3-mediated pyroptosis. Phytomedicine. 114:154753. PMID:37084628. DOI:10.1016/j.phymed.2023.154753. PMCID:PMC10060206. https://pubmed.ncbi.nlm.nih.gov/37084628/

Part Three: Oxidative stress and atherosclerosis

1. Tang C, Deng L, Luo Q, He G (2023) Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis. Front Genet. 13:998954. PMID:36685865. DOI:10.3389/fgene.2022.998954. PMCID:PMC9845256. https://pubmed.ncbi.nlm.nih.gov/36685865/

2. Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y (2023) Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med. 21(1):519. PMID:37533007. DOI:10.1186/s12967-023-04361-7. PMCID:PMC10394930. https://pubmed.ncbi.nlm.nih.gov/37533007/

3. Infante-Menéndez J, González-López P, Huertas-Lárez R, Gómez-Hernández A, Escribano ó (2023) Oxidative stress modulation by ncRNAs and their emerging role as therapeutic targets in atherosclerosis and non-alcoholic fatty liver disease. Antioxidants (Basel). 12(2):262. DOI:10.3390/antiox12020262. PMID:36829822; PMCID: PMC9952114. https://pubmed.ncbi.nlm.nih.gov/36829822/

4. Cheng C, Zhang J, Li X, Xue F, Cao L, Meng L, Sui W, Zhang M, Zhao Y, Xi B, Yu X, Xu F, Yang J, Zhang Y, Zhang C (2023) NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice. Signal Transduct Target Ther. 8(1):290. PMID:37553374. DOI:10.1038/s41392-023-01560-y. Erratum in: Signal Transduct Target Ther. 8(1):329. PMCID:PMC10409771. https://pubmed.ncbi.nlm.nih.gov/37553374/

5. Jiang X, Ma C, Gao Y, Cui H, Zheng Y, Li J, Zong W, Zhang Q (2023) Tongxinluo attenuates atherosclerosis by inhibiting ROS/NLRP3/caspase-1-mediated endothelial cell pyroptosis. J Ethnopharmacol. 304:116011. PMID:36529253. DOI:10.1016/j.jep.2022.116011. https://pubmed.ncbi.nlm.nih.gov/36529253/

Part Four: Phosphatase and Tensin Homolog ( PTEN)

1. Chen CY, Chen J, He L, Stiles BL (2018) PTEN: Tumor suppressor and metabolic regulator. Front Endocrinol (Lausanne). 9:338. PMID:30038596.? DOI: 10.3389/fendo.2018.00338. PMCID:PMC6046409. ?https://pubmed.ncbi.nlm.nih.gov/30038596/

2. van Ree JH, Jeganathan KB, Fierro Velasco RO, Zhang C, Can I, Hamada M, Li H, Baker DJ, van Deursen JM (2023) Hyperphosphorylated PTEN exerts oncogenic properties. Nat Commun. 14(1):2983. PMID:37225693.? DOI:10.1038/s41467-023-38740-x. PMCID:PMC10209192. https://pubmed.ncbi.nlm.nih.gov/37225693/

3. Langdon CG (2023) Nuclear PTEN's functions in suppressing tumorigenesis: implications for rare cancers. Biomolecules. 13(2):259. PMID:36830628. DOI:10.3390/biom13020259. PMCID:PMC9953540. https://pubmed.ncbi.nlm.nih.gov/36830628/

4.?Chen AM, Azar SS, Harris A, Brecha NC, Pérez de Sevilla Müller L (2021) PTEN expression regulates gap junction connectivity in the retina. Front Neuroanat. 15:629244. PMID:34093139. DOI:10.3389/fnana.2021.629244. PMCID:PMC8172595. https://pubmed.ncbi.nlm.nih.gov/34093139/

5. Gupta S, Sharma P, Chaudhary M, Premraj S, Kaur S, Vijayan V, Arun MG, Prasad NG, Ramachandran R (2023) Pten associates with important gene regulatory network to fine-tune Müller glia-mediated zebrafish retina regeneration. Glia. 71(2):259-283. PMID:36128720. DOI:10.1002/glia.24270. https://pubmed.ncbi.nlm.nih.gov/36128720/

Part Five: Synaptic Plasticity

1. Getz SA, Tariq K, Marchand DH, Dickson CR, Howe Vi JR, Skelton PD, Wang W, Li M, Barry JM, Hong J, Luikart BW (2022) PTEN regulates dendritic arborization by decreasing microtubule polymerization rate. J Neurosci. 42(10):1945-1957. PMID:35101965. DOI:10.1523/JNEUROSCI.1835-21.2022. PMCID:PMC8916761. https://pubmed.ncbi.nlm.nih.gov/35101965/

2. Rumian NL, Freund RK, Dell'Acqua ML, Coultrap SJ, Bayer KU (2023) Decreased nitrosylation of CaMKII causes aging-associated impairments in memory and synaptic plasticity in mice. Sci Signal. 16(795):eade5892. PMID:37490545. DOI:10.1126/scisignal.ade5892. PMCID:PMC10485821. https://pubmed.ncbi.nlm.nih.gov/37490545/

3. Li S, Olde Heuvel F, Rehman R, Aousji O, Froehlich A, Li Z, Jark R, Zhang W, Conquest A, Woelfle S, Schoen M, O Meara CC, Reinhardt RL, Voehringer D, Kassubek J, Ludolph A, Huber-Lang M, Kn?ll B, Morganti-Kossmann MC, Brockmann MM, Boeckers T, Roselli F (2023) Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Nat Commun. 14(1):200. PMID:36639371. DOI:10.1038/s41467-023-35806-8. PMCID:PMC9839781. https://pubmed.ncbi.nlm.nih.gov/36639371/

4. Yu CJ, Wang M, Li RY, Wei T, Yang HC, Yin YS, Mi YX, Qin Q, Tang Y (2023) TREM2 and microglia contribute to the synaptic plasticity: From physiology to pathology. Mol Neurobiol. 60(2):512-523. PMID:36318443. DOI:10.1007/s12035-022-03100-1.https://pubmed.ncbi.nlm.nih.gov/36318443/

5. Guntupalli S, Park P, Han DH, Zhang L, Yong XLH, Ringuet M, Blackmore DG, Jhaveri DJ, Koentgen F, Widagdo J, Kaang BK, Anggono V (2023) Ubiquitination of the GluA1 subunit of AMPA receptors is required for synaptic plasticity, memory, and cognitive flexibility. J Neurosci. 43(30):5448-5457. PMID:37419688. DOI:10.1523/JNEUROSCI.1542-22.2023. PMCID:PMC10376930. https://pubmed.ncbi.nlm.nih.gov/37419688/

Part Six: Long-Term Potentiation (LTP)

1. Wang XT, Zhou L, Dong BB, Xu FX, Wang DJ, Shen EW, Cai XY, Wang Y, Wang N, Ji SJ, Chen W, Schonewille M, Zhu JJ, De Zeeuw CI, Shen Y (2023) cAMP-EPAC-PKCε-RIM1α signaling regulates presynaptic long-term potentiation and motor learning. Elife. 12:e80875. PMID:37159499. DOI:10.7554/eLife.80875. PMCID:PMC10171863. https://pubmed.ncbi.nlm.nih.gov/37159499/

2. Zhang Y, Liu RY, Smolen P, Cleary LJ, Byrne JH (2022) Dynamics and mechanisms of ERK activation after different protocols that induce long-term synaptic facilitation in?Aplysia. Oxf Open Neurosci. 2:kvac014. PMID:37649778. DOI:10.1093/oons/kvac014. PMCID:PMC10464504. https://pubmed.ncbi.nlm.nih.gov/37649778/

3. Fukaya R, Miyano R, Hirai H, Sakaba T (2023) Mechanistic insights into cAMP-mediated presynaptic potentiation at hippocampal mossy fiber synapses. Front Cell Neurosci. 17:1237589. PMID:37519634.? DOI:10.3389/fncel.2023.1237589. PMCID:PMC10372368. https://pubmed.ncbi.nlm.nih.gov/37519634/

4. Luo M, Li L, Ding M, Niu Y, Xu X, Shi X, Shan N, Qiu Z, Piao F, Zhang C (2023) Long-term potentiation and depression regulatory microRNAs were highlighted in Bisphenol A induced learning and memory impairment by microRNA sequencing and bioinformatics analysis. PLoS One. 18(1):e0279029. PMID:36656826. DOI:10.1371/journal.pone.0279029. PMCID:PMC9851566. https://pubmed.ncbi.nlm.nih.gov/36656826/

5. Lewitus VJ, Blackwell KT (2023) Estradiol Receptors Inhibit Long-Term Potentiation in the Dorsomedial Striatum. eNeuro. 10(8):ENEURO.0071-23.2023. PMID:37487741. DOI:10.1523/ENEURO.0071-23.2023. PMCID: PMC10405883. https://pubmed.ncbi.nlm.nih.gov/37487741/

Part Seven: Learning and memory

1. Wallis TP, Venkatesh BG, Narayana VK, Kvaskoff D, Ho A, Sullivan RK, Windels F, Sah P, Meunier FA (2021) Saturated free fatty acids and association with memory formation. Nat Commun. 12(1):3443. PMID:34103527. DOI:10.1038/s41467-021-23840-3. PMCID:PMC8187648.? https://pubmed.ncbi.nlm.nih.gov/34103527/

2. Koedinger KR, Carvalho PF, Liu R, McLaughlin EA (2023) An astonishing regularity in student learning rate. Proc Natl Acad Sci USA. 120(13):e2221311120. DOI:10.1073/pnas.2221311120. PMID:36940328. PMCID:PMC10068755. https://pubmed.ncbi.nlm.nih.gov/36940328/

3. Reemst K, Shahin H, Shahar OD (2023) Learning and memory formation in zebrafish: Protein dynamics and molecular tools. Front Cell Dev Biol. 11:1120984. PMID:36968211. DOI:10.3389/fcell.2023.1120984. PMCID: PMC10034119. https://pubmed.ncbi.nlm.nih.gov/36968211/

4.?Zhao J, Bang S, Furutani K, McGinnis A, Jiang C, Roberts A, Donnelly CR, He Q, James ML, Berger M, Ko MC, Wang H, Palmiter RD, Ji RR (2023) PD-L1/PD-1 checkpoint pathway regulates hippocampal neuronal excitability and learning and memory behavior. Neuron. 111(17):2709-2726.e9. PMID:37348508. DOI:10.1016/j.neuron.2023.05.022. PMCID: PMC10529885. https://pubmed.ncbi.nlm.nih.gov/37348508/

5. Goulty M, Botton-Amiot G, Rosato E, Sprecher SG, Feuda R (2023) The monoaminergic system is a bilaterian innovation. Nat Commun. 14(1):3284. PMID:37280201.? DOI:10.1038/s41467-023-39030-2. PMCID:PMC10244343. https://pubmed.ncbi.nlm.nih.gov/37280201/

Part Eight: Alzheimer’s disease (AD)

1. Lu Y, Tan L, Xie J, Cheng L, Wang X (2022) Distinct microglia alternative splicing in Alzheimer's disease. Aging (Albany NY). 14(16):6554-6566. PMID:36006403. DOI:10.18632/aging.204223. PMCID:PMC9467408. https://pubmed.ncbi.nlm.nih.gov/36006403/

2. Du Y, Liu G, Chen D, Yang J, Wang J, Sun Y, Zhang Q, Liu Y (2023) NQO1 regulates expression and alternative splicing of apoptotic genes associated with Alzheimer's disease in PC12 cells. Brain Behav. 13(5):e2917. PMID:37002649. DOI:10.1002/brb3.2917. PMCID:PMC10175992. https://pubmed.ncbi.nlm.nih.gov/37002649/

3. Jorfi M, Maaser-Hecker A, Tanzi RE (2023) The neuroimmune axis of Alzheimer's disease. Genome Med. 15(1):6. PMID:36703235. DOI:10.1186/s13073-023-01155-w. PMCID: PMC9878767. https://pubmed.ncbi.nlm.nih.gov/36703235/

4. Griffiths J, Grant SGN (2023) Synapse pathology in Alzheimer's disease. Semin Cell Dev Biol. 139:13-23. PMID:35690535. DOI:10.1016/j.semcdb.2022.05.028. https://pubmed.ncbi.nlm.nih.gov/35690535/

5. Varma VR, Desai RJ, Navakkode S, Wong LW, Anerillas C, Loeffler T, Schilcher I, Mahesri M, Chin K, Horton DB, Kim SC, Gerhard T, Segal JB, Schneeweiss S, Gorospe M, Sajikumar S, Thambisetty M (2023) Hydroxychloroquine lowers Alzheimer's disease and related dementias risk and rescues molecular phenotypes related to Alzheimer's disease. Mol Psychiatry. 28(3):1312-1326. PMID:36577843. DOI:10.1038/s41380-022-01912-0. PMCID:PMC10005941. https://pubmed.ncbi.nlm.nih.gov/36577843/

Part Nine: Parkinson’s Disease (PD)

1. Siderowf A, Concha-Marambio L, Lafontant DE, Farris CM, Ma Y, Urenia PA, Nguyen H, Alcalay RN, Chahine LM, Foroud T, Galasko D, Kieburtz K, Merchant K, Mollenhauer B, Poston KL, Seibyl J, Simuni T, Tanner CM, Weintraub D, Videnovic A, Choi SH, Kurth R, Caspell-Garcia C, Coffey CS, Frasier M, Oliveira LMA, Hutten SJ, Sherer T, Marek K, Soto C; Parkinson's Progression Markers Initiative (2023) Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 22(5):407-417. PMID:37059509. DOI:10.1016/S1474-4422(23)00109-6. https://pubmed.ncbi.nlm.nih.gov/37059509/

2. Sun CP, Zhou JJ, Yu ZL, Huo XK, Zhang J, Morisseau C, Hammock BD, Ma XC (2022) Kurarinone alleviated Parkinson's disease via stabilization of epoxyeicosatrienoic acids in animal model. Proc Natl Acad Sci USA. 119(9):e2118818119. PMID:35217618. DOI:10.1073/pnas.2118818119. PMCID:PMC8892522. https://pubmed.ncbi.nlm.nih.gov/35217618/

3. Ye H, Robak LA, Yu M, Cykowski M, Shulman JM (2023) Genetics and pathogenesis of Parkinson's syndrome. Annu Rev Pathol. 18:95-121. PMID:36100231. DOI:10.1146/annurev-pathmechdis-031521-034145. ??https://pubmed.ncbi.nlm.nih.gov/36100231/

4. Dhanwani R, Lima-Junior JR, Sethi A, Pham J, Williams G, Frazier A, Xu Y, Amara AW, Standaert DG, Goldman JG, Litvan I, Alcalay RN, Peters B, Sulzer D, Arlehamn CSL, Sette A (2022) Transcriptional analysis of peripheral memory T cells reveals Parkinson's disease-specific gene signatures. NPJ Parkinsons Dis. 8(1):30. PMID:35314697. DOI:10.1038/s41531-022-00282-2. PMCID:PMC8938520. https://pubmed.ncbi.nlm.nih.gov/35314697/

5. Ye H, Robak LA, Yu M, Cykowski M, Shulman JM (2023) Genetics and pathogenesis of Parkinson's syndrome. Annu Rev Pathol. 18:95-121. DOI:10.1146/annurev-pathmechdis-031521-034145. PMID:36100231. PMCID: PMC10290758. https://pubmed.ncbi.nlm.nih.gov/36100231/

Part Ten: Heart Failure

1. Fauchier L, Bisson A, Bodin A (2023) Heart failure with preserved ejection fraction and atrial fibrillation: recent advances and open questions. BMC Med. 21(1):54. PMID:36782248. DOI:10.1186/s12916-023-02764-3. PMCID:PMC9926737. https://pubmed.ncbi.nlm.nih.gov/36782248/

2. Wang Y, Gao T, Meng C, Li S, Bi L, Geng Y, Zhang P (2022) Sodium-glucose co-transporter 2 inhibitors in heart failure with mildly reduced or preserved ejection fraction: an updated systematic review and meta-analysis. Eur J Med Res. 27(1):314. PMID:36581880.? DOI:10.1186/s40001-022-00945-z. PMCID: PMC9798580. https://pubmed.ncbi.nlm.nih.gov/36581880/

3. Treewaree S, Kulthamrongsri N, Owattanapanich W, Krittayaphong R (2023) Is it time for class I recommendation for sodium-glucose cotransporter-2 inhibitors in heart failure with mildly reduced or preserved ejection fraction?: An updated systematic review and meta-analysis. Front Cardiovasc Med. 10:1046194. PMID:36824458. DOI:10.3389/fcvm.2023.1046194. PMCID: PMC9941559. https://pubmed.ncbi.nlm.nih.gov/36824458/

4.?Arnold SV, Silverman DN, Gosch K, Nassif ME, Infeld M, Litwin S, Meyer M, Fendler TJ (2023) Beta-blocker use and heart failure outcomes in mildly reduced and preserved ejection fraction. JACC Heart Fail. 11(8Pt1):893-900. PMID:37140513. DOI:10.1016/j.jchf.2023.03.017. https://pubmed.ncbi.nlm.nih.gov/37140513/

5.?Paolillo S, Dell'Aversana S, Esposito I, Poccia A, Perrone Filardi P (2021) The use of β-blockers in patients with heart failure and comorbidities: Doubts, certainties and unsolved issues. Eur J Intern Med. 88:9-14. PMID:33941435. DOI:10.1016/j.ejim.2021.03.035. https://pubmed.ncbi.nlm.nih.gov/33941435/

Part Eleven: Coenzyme Q10 (Q10)

1.?Hargreaves I, Heaton RA, Mantle D (2020) Disorders of human coenzyme Q10 metabolism: An overview. Int J Mol Sci. 21(18):6695. PMID:32933108. DOI:10.3390/ijms21186695. PMCID:PMC7555759. https://pubmed.ncbi.nlm.nih.gov/32933108/

2.?Manzar H, Abdulhussein D, Yap TE, Cordeiro MF (2020) Cellular consequences of coenzyme Q10 deficiency in neurodegeneration of the retina and brain. Int J Mol Sci. 21(23):9299. PMID:33291255. DOI:10.3390/ijms21239299. PMCID:PMC7730520. https://pubmed.ncbi.nlm.nih.gov/33291255/

3. Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG (2023) Coenzyme Q10 and dementia: A systematic review. Antioxidants (Basel). 12(2):533. PMID:36830090. DOI:10.3390/antiox12020533. PMCID:PMC9952341. https://pubmed.ncbi.nlm.nih.gov/36830090/

4.?Mantle D, Millichap L, Castro-Marrero J, Hargreaves IP (2023) Primary coenzyme Q10 deficiency: An update. Antioxidants (Basel). 12(8):1652. PMID:37627647.? DOI:10.3390/antiox12081652. PMCID:PMC10451954. https://pubmed.ncbi.nlm.nih.gov/37627647/

5.?Chow SL, Bozkurt B, Baker WL, Bleske BE, Breathett K, Fonarow GC, Greenberg B, Khazanie P, Leclerc J, Morris AA, Reza N, Yancy CW; American Heart Association Clinical Pharmacology Committee and Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Council on Cardiovascular and Stroke Nursing (2023) Complementary and alternative medicines in the management of heart failure: A scientific statement from the American Heart Association. Circulation. 147(2):e4-e30. PMID:36475715. DO:10.1161/CIR.0000000000001110. https://pubmed.ncbi.nlm.nih.gov/36475715/

Part Twelve: Nicotinamide adenine dinucleotide (NAD+) and Nicotinamide mononucleotide (NMN)

1. Pehar M, Harlan BA, Killoy KM, Vargas MR (2018) Nicotinamide adenine dinucleotide metabolism and neurodegeneration. Antioxid Redox Signal. 28(18):1652-1668. PMID:28548540. DOI:10.1089/ars.2017.7145. PMCID:PMC5962335. https://pubmed.ncbi.nlm.nih.gov/28548540/

2. Hopp AK, Grüter P, Hottiger MO (2019) Regulation of glucose metabolism by NAD+ and ADP-ribosylation. Cells. 8(8):890. PMID:31412683. DOI:10.3390/cells8080890. PMCID:PMC6721828. Erratum in: Cells. 8(11). https://pubmed.ncbi.nlm.nih.gov/31412683/

3. Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, Haris M, Reddy R, Patay Z, Baur J, Bagga P (2021) Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol Metab. 49:101195. PMID:33609766. DOI:10.1016/j.molmet.2021.101195. PMCID:PMC7973386. https://pubmed.ncbi.nlm.nih.gov/33609766/

4. Verdin E (2015) NAD? in aging, metabolism, and neurodegeneration. Sci 350(6265):1208-1213. PMID: 26785480. DOI:10.1126/science.aac4854. https://pubmed.ncbi.nlm.nih.gov/26785480/ence.

5. Basse AL, Nielsen KN, Karavaeva I, Ingerslev LR, Ma T, Havelund JF, Nielsen TS, Frost M, Peics J, Dalbram E, Dall M, Zierath JR, Barrès R, F?rgeman NJ, Treebak JT, Gerhart-Hines Z (2023) NAMPT-dependent NAD+ biosynthesis controls circadian metabolism in a tissue-specific manner. Proc Natl Acad Sci USA. 120(14):e2220102120. PMID:36996103. DOI:10.1073/pnas.2220102120. PMCID:PMC10083581. https://pubmed.ncbi.nlm.nih.gov/36996103/

Part thirteen: Histone Acetylation

1. Izzo LT, Trefely S, Demetriadou C, Drummond JM, Mizukami T, Kuprasertkul N, Farria AT, Nguyen PTT, Murali N, Reich L, Kantner DS, Shaffer J, Affronti H, Carrer A, Andrews A, Capell BC, Snyder NW, Wellen KE (2023) Acetylcarnitine shuttling links mitochondrial metabolism to histone acetylation and lipogenesis. Sci Adv. 9(18):eadf0115. PMID:37134161. DOI:10.1126/sciadv.adf0115. PMCID:PMC10156126. ?https://pubmed.ncbi.nlm.nih.gov/37134161/

2. Wu K, Fan D, Zhao H, Liu Z, Hou Z, Tao W, Yu G, Yuan S, Zhu X, Kang M, Tian Y, Chen ZJ, Liu J, Gao L (2023) Dynamics of histone acetylation during human early embryogenesis. Cell Discov. 9(1):29. PMID:36914622. DOI:10.1038/s41421-022-00514-y. PMCID:PMC10011383. https://pubmed.ncbi.nlm.nih.gov/36914622/

3.?Yue Y, Yang WS, Zhang L, Liu CP, Xu RM (2022 Topography of histone H3-H4 interaction with the Hat1-Hat2 acetyltransferase complex. Genes Dev. 36(7-8):408-413. PMID:35393344. DOI:10.1101/gad.349099.121. PMCID:PMC9067401. https://pubmed.ncbi.nlm.nih.gov/35393344/

4. Luda KM, Longo J, Kitchen-Goosen SM, Duimstra LR, Ma EH, Watson MJ, Oswald BM, Fu Z, Madaj Z, Kupai A, Dickson BM, DeCamp LM, Dahabieh MS, Compton SE, Teis R, Kaymak I, Lau KH, Kelly DP, Puchalska P, Williams KS, Krawczyk CM, Lévesque D, Boisvert FM, Sheldon RD, Rothbart SB, Crawford PA, Jones RG (2023) Ketolysis drives CD8+?T?cell effector function through effects on histone acetylation. Immunity. 56(9):2021-2035.e8. PMID:37516105. DOI:10.1016/j.immuni.2023.07.002. PMCID: PMC10528215. https://pubmed.ncbi.nlm.nih.gov/37516105/

5. Patel AB, He Y, Radhakrishnan I (2024) Histone acetylation and deacetylation - Mechanistic insights from structural biology. Gene. 890:147798. PMID:37726026. DOI:10.1016/j.gene.2023.147798. https://pubmed.ncbi.nlm.nih.gov/37726026/

Part Fourteen: RNA Splicing

1.?Miao W, Porter DF, Lopez-Pajares V, Siprashvili Z, Meyers RM, Bai Y, Nguyen DT, Ko LA, Zarnegar BJ, Ferguson ID, Mills MM, Jilly-Rehak CE, Wu CG, Yang YY, Meyers JM, Hong AW, Reynolds DL, Ramanathan M, Tao S, Jiang S, Flynn RA, Wang Y, Nolan GP, Khavari PA (2023) Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation. Cell. 186(1):80-97.e26. PMID:36608661. DOI:10.1016/j.cell.2022.12.004. PMCID:PMC10171372. https://pubmed.ncbi.nlm.nih.gov/36608661/

2. Bradley RK, Anczuków O (2023) RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 23(3):135-155. PMID:36627445. DOI:10.1038/s41568-022-00541-7. PMCID:PMC10132032. https://pubmed.ncbi.nlm.nih.gov/36627445/

3. Wang E, Pineda JMB, Kim WJ, Chen S, Bourcier J, Stahl M, Hogg SJ, Bewersdorf JP, Han C, Singer ME, Cui D, Erickson CE, Tittley SM, Penson AV, Knorr K, Stanley RF, Rahman J, Krishnamoorthy G, Fagin JA, Creger E, McMillan E, Mak CC, Jarvis M, Bossard C, Beaupre DM, Bradley RK, Abdel-Wahab O (2023) Modulation of RNA splicing enhances response to BCL2 inhibition in leukemia. Cancer Cell. 41(1):164-180.e8. PMID:36563682. DOI:10.1016/j.ccell.2022.12.002. PMCID: PMC9839614. nbsp;https://pubmed.ncbi.nlm.nih.gov/36563682/

4. Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD (2023) Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA. 29(5):531-550. PMID:36737103. DOI:10.1261/rna.079273.122. PMCID:PMC10158995. https://pubmed.ncbi.nlm.nih.gov/36737103/

5. Baughn MW, Melamed Z, López-Erauskin J, Beccari MS, Ling K, Zuberi A, Presa M, Gonzalo-Gil E, Maimon R, Vazquez-Sanchez S, Chaturvedi S, Bravo-Hernández M, Taupin V, Moore S, Artates JW, Acks E, Ndayambaje IS, Agra de Almeida Quadros AR, Jafar-Nejad P, Rigo F, Bennett CF, Lutz C, Lagier-Tourenne C, Cleveland DW (2023) Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science. 379(6637):1140-1149. PMID:36927019. DOI:10.1126/science.abq5622. PMCID:PMC10148063. https://pubmed.ncbi.nlm.nih.gov/36927019/

Part Fifteen: N-End Rule-Dependent Protein Degradation

1. Abeywansha T, Huang W, Ye X, Nawrocki A, Lan X, Jankowsky E, Taylor DJ, Zhang Y (2023)The structural basis of tRNA recognition by arginyl-tRNA-protein transferase. Nat Commun. 14(1):2232. PMID:37076488. DOI:10.1038/s41467-023-38004-8. PMCID:PMC10115844. https://pubmed.ncbi.nlm.nih.gov/37076488/

2. Shim SM, Choi HR, Kwon SC, Kim HY, Sung KW, Jung EJ, Mun SR, Bae TH, Kim DH, Son YS, Jung CH, Lee J, Lee MJ, Park JW, Kwon YT (2023) The Cys-N-degron pathway modulates pexophagy through the N-terminal oxidation and arginylation of ACAD10. Autophagy. 19(6):1642-1661. PMID:36184612. DOI:10.1080/15548627.2022.2126617. PMCID: PMC10262816. https://pubmed.ncbi.nlm.nih.gov/36184612/

3. Macedo-da-Silva J, Rosa-Fernandes L, Gomes VM, Santiago VF, Santos DM, Molnar CMS, Barboza BR, de Souza EE, Marques RF, Boscardin SB, Durigon EL, Marinho CRF, Wrenger C, Marie SKN, Palmisano G (2023) Protein arginylation is regulated during SARS-CoV-2 infection. Viruses. 15(2):290. PMID:36851505. DOI:10.3390/v15020290. PMCID:PMC9964439. https://pubmed.ncbi.nlm.nih.gov/36851505/

4. Zhao J, Pan B, Fina M, Huang Y, Shimogawa M, Luk KC, Rhoades E, Petersson EJ, Dong DW, Kashina A (2022) α-Synuclein arginylation in the human brain. Transl Neurodegener. 11(1):20. PMID:35395956. DOI:10.1186/s40035-022-00295-0. PMCID:PMC8991655. https://pubmed.ncbi.nlm.nih.gov/35395956/

5. Wiley DJ, DUrso G, Zhang F (2020) Posttranslational arginylation enzyme arginyltransferase1 shows genetic interactions with specific cellular pathways in vivo. Front Physiol. 11:427. PMID:32435206. DOI:10.3389/fphys.2020.00427. PMCID: PMC7218141. https://pubmed.ncbi.nlm.nih.gov/32435206/

Part Sixteen: Metformin

1. Cedillo L, Ahsan FM, Li S, Stuhr NL, Zhou Y, Zhang Y, Adedoja A, Murphy LM, Yerevanian A, Emans S, Dao K, Li Z, Peterson ND, Watrous J, Jain M, Das S, Pukkila-Worley R, Curran SP, Soukas AA (2023) Ether lipid biosynthesis promotes lifespan extension and enables diverse pro-longevity paradigms in Caenorhabditis elegans. Elife. 12:e82210. PMID:37606250.nbsp; DOI:10.7554/eLife.82210. PMCID: PMC10444025. https://pubmed.ncbi.nlm.nih.gov/37606250/

2.?Luo S, Wong ICK, Chui CSL, Zheng J, Huang Y, Schooling CM, Yeung SLA (2023) Effects of putative metformin targets on phenotypic age and leukocyte telomere length: a mendelian randomisation study using data from the UK Biobank. Lancet Healthy Longev. 4(7):e337-e344. PMID:37421961. DOI:10.1016/S2666-7568(23)00085-5. https://pubmed.ncbi.nlm.nih.gov/37421961/

3. LaMoia TE, Shulman GI (2021) Cellular and Molecular Mechanisms of Metformin Action. Endocr Rev. 42(1):77-96. PMID:32897388. DOI:10.1210/endrev/bnaa023. PMCID:PMC7846086. https://pubmed.ncbi.nlm.nih.gov/32897388/

4. Foretz M, Guigas B, Viollet B (2023) Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol. 19(8):460-476. PMID:37130947.? DOI:10.1038/s41574-023-00833-4. PMCID:PMC10153049. https://pubmed.ncbi.nlm.nih.gov/37130947/

5. Zhang K, Wang T, Sun GF, Xiao JX, Jiang LP, Tou FF, Qu XH, Han XJ (2023) Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion. Free Radic Biol Med. 205:47-61. PMID:37253410.? DOI:10.1016/j.freeradbiomed.2023.05.019. 1.??? https://pubmed.ncbi.nlm.nih.gov/37253410/

Part Seventeen: Breast cancer

1. Zubair M, Wang S, Ali N (2021) Advanced approaches to breast cancer classification and diagnosis. Front Pharmacol. 11:632079. PMID:33716731. DOI:10.3389/fphar.2020.632079. PMCID:PMC7952319. https://pubmed.ncbi.nlm.nih.gov/33716731/

2. Bergholz JS, Wang Q, Wang Q, Ramseier M, Prakadan S, Wang W, Fang R, Kabraji S, Zhou Q, Gray GK, Abell-Hart K, Xie S, Guo X, Gu H, Von T, Jiang T, Tang S, Freeman GJ, Kim HJ, Shalek AK, Roberts TM, Zhao JJ (2023) PI3Kβ controls immune evasion in PTEN-deficient breast tumours. Nature. 617(7959):139-146. PMID:37076617. DOI:10.1038/s41586-023-05940-w. PMCID:PMC10494520. https://pubmed.ncbi.nlm.nih.gov/37076617/

3. Wang J, Zhang S, Zhang J, Zhang Z, Ma Q, Fu W, Chen X, Zhao D, Zhao M, Di C, Xie X (2023) A novel PTEN mutant caused by polymorphism in cis-regulatory elements is involved in chemosensitivity in breast cancer. Am J Cancer Res. 13(1):86-104. PMID:36777516. PMCID:PMC9906080. https://pubmed.ncbi.nlm.nih.gov/36777516/

4. Xie XQ, Yang Y, Wang Q, Liu HF, Fang XY, Li CL, Jiang YZ, Wang S, Zhao HY, Miao JY, Ding SS, Liu XD, Yao XH, Yang WT, Jiang J, Shao ZM, Jin G, Bian XW (2023) Targeting ATAD3A-PINK1-mitophagy axis overcomes chemoimmunotherapy resistance by redirecting PD-L1 to mitochondria. Cell Res. 33(3):215-228. PMID:36627348. DOI:10.1038/s41422-022-00766-z. PMCID:PMC9977947. https://pubmed.ncbi.nlm.nih.gov/36627348/

5. Nolan E, Lindeman GJ, Visvader JE (2023) Deciphering breast cancer: from biology to the clinic. Cell. 186(8):1708-1728. PMID:36931265. DOI:10.1016/j.cell.2023.01.040. https://pubmed.ncbi.nlm.nih.gov/36931265/

Part Eighteen: Mitogen-Activated Protein Kinase (MAPK)

1. Yu B, Zhang Y, Wang T, Guo J, Kong C, Chen Z, Ma X, Qiu T (2023) MAPK signaling pathways in hepatic ischemia/reperfusion injury. J Inflamm Res. 16:1405-1418. PMID:37012971. DOI:10.2147/JIR.S396604. PMCID:PMC10065871. https://pubmed.ncbi.nlm.nih.gov/37012971/

2. Engler M, Albers D, Von Maltitz P, Gro? R, Münch J, Cirstea IC (2023) ACE2-EGFR-MAPK signaling contributes to SARS-CoV-2 infection. Life Sci Alliance. 6(9):e202201880. PMID:37402592. DOI:10.26508/lsa.202201880. PMCID:PMC10320016. https://pubmed.ncbi.nlm.nih.gov/37402592/

3. Shi ZW, Zhu L, Song ZR, Liu TJ, Hao DJ (2023) Roles of p38 MAPK signalling in intervertebral disc degeneration. Cell Prolif. 56(8):e13438. PMID:36872558. DOI:10.1111/cpr.13438. PMCID:PMC10392072.nbsp; https://pubmed.ncbi.nlm.nih.gov/36872558/

4. Corrêa SA, Eales KL (2012) The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct. 2012:649079. PMID:22792454. DOI:10.1155/2012/649079. PMCID:PMC3389708.nbsp; https://pubmed.ncbi.nlm.nih.gov/22792454/

5. Chen C, Rong Y, Zhuang Y, Tang C, Liu Q, Lin P, Li D, Zhao X, Lu F, Qu J, Liu X (2023) RNA-seq analysis reveals an essential role of the cGMP-PKG-MAPK pathways in retinal degeneration caused by Cep250 deficiency. Int J Mol Sci. 24(10):8843. PMID:37240188. DOI:10.3390/ijms24108843. PMCID: PMC10218315. https://pubmed.ncbi.nlm.nih.gov/37240188/

Part Nineteen: Trauma

1. Zanza C, Romenskaya T, Racca F, Rocca E, Piccolella F, Piccioni A, Saviano A, Formenti-Ujlaki G, Savioli G, Franceschi F, Longhitano Y (2023) Severe trauma-induced coagulopathy: Molecular mechanisms underlying critical illness. Int J Mol Sci. 24(8):7118. PMID:37108280. DOI:10.3390/ijms24087118. PMCID: PMC10138568. https://pubmed.ncbi.nlm.nih.gov/37108280/

2.?Dogrul BN, Kiliccalan I, Asci ES, Peker SC (2020) Blunt trauma related chest wall and pulmonary injuries: An overview. Chin J Traumatol. 23(3):125-138. PMID:32417043.? DOI:10.1016/j.cjtee.2020.04.003. PMCID:PMC7296362. https://pubmed.ncbi.nlm.nih.gov/32417043/

3. Hickcox L, Hashemzadeh M, Movahed MR (2023) Very low risk of ST-elevation and non-ST-elevation myocardial infarction in patients with chest trauma. Am J Cardiovasc Dis. 13(4):247-251. PMID:37736353. PMCID: PMC10509452. https://pubmed.ncbi.nlm.nih.gov/37736353/

4. Bischof GN, Cross DJ (2023) Brain trauma imaging. J Nucl Med. 64(1):20-29. PMID:36599475. DOI:10.2967/jnumed.121.263293. PMCID:PMC9841252. https://pubmed.ncbi.nlm.nih.gov/36599475/

5. Bouzat P, Charbit J, Abback PS, Huet-Garrigue D, Delhaye N, Leone M, Marcotte G, David JS, Levrat A, Asehnoune K, Pottecher J, Duranteau J, Courvalin E, Adolle A, Sourd D, Bosson JL, Riou B, Gauss T, Payen JF; PROCOAG Study Group (2023) Efficacy and safety of early administration of 4-factor prothrombin complex concentrate in patients with trauma at risk of massive transfusion: The PROCOAG Randomized Clinical Trial. JAMA. 329(16):1367-1375. PMID:36942533. DOI:10.1001/jama.2023.4080. PMCID:PMC10031505. https://pubmed.ncbi.nlm.nih.gov/36942533/

Part Twenty: Narcolepsy

1.??Ollila HM, Sharon E, Lin L, Sinnott-Armstrong N, Ambati A, Yogeshwar SM, Hillary RP, Jolanki O, Faraco J, Einen M, Luo G, Zhang J, Han F, Yan H, Dong XS, Li J, Zhang J, Hong SC, Kim TW, Dauvilliers Y, Barateau L, Lammers GJ, Fronczek R, Mayer G, Santamaria J, Arnulf I, Knudsen-Heier S, Bredahl MKL, Thorsby PM, Plazzi G, Pizza F, Moresco M, Crowe C, Van den Eeden SK, Lecendreux M, Bourgin P, Kanbayashi T, Martínez-Orozco FJ, Peraita-Adrados R, Benetó A, Montplaisir J, Desautels A, Huang YS; FinnGen; Jennum P, Nevsimalova S, Kemlink D, Iranzo A, Overeem S, Wierzbicka A, Geisler P, Sonka K, Honda M, H?gl B, Stefani A, Coelho FM, Mantovani V, Feketeova E, Wadelius M, Eriksson N, Smedje H, Hallberg P, Hesla PE, Rye D, Pelin Z, Ferini-Strambi L, Bassetti CL, Mathis J, Khatami R, Aran A, Nampoothiri S, Olsson T, Kockum I, Partinen M, Perola M, Kornum BR, Rueger S, Winkelmann J, Miyagawa T, Toyoda H, Khor SS, Shimada M, Tokunaga K, Rivas M, Pritchard JK, Risch N, Kutalik Z, O'Hara R, Hallmayer J, Ye CJ, Mignot EJ (2023) Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy. Nat Commun. 14(1):2709. PMID:37188663. DOI:10.1038/s41467-023-36120-z. PMCID:PMC10185546.? https://pubmed.ncbi.nlm.nih.gov/37188663/

2.?Buonocore SM, van der Most RG (2022) Narcolepsy and H1N1 influenza immunology a decade later: What have we learned? Front Immunol. 13:902840. PMID:36311717. DOI:10.3389/fimmu.2022.902840. PMCID:PMC9601309. ?https://pubmed.ncbi.nlm.nih.gov/36311717/

3. Zhang M, Thieux M, Inocente CO, Vieux N, Arvis L, Villanueva C, Lin JS, Plancoulaine S, Guyon A, Franco P (2022) Characterization of rapid weight gain phenotype in children with narcolepsy. CNS Neurosci Ther. 28(6):829-841. PMID:35212159.? DOI:10.1111/cns.13811. PMCID:PMC9062543. https://pubmed.ncbi.nlm.nih.gov/35212159/

4. Schneider LD, Morse AM, Strunc MJ, Lee-Iannotti JK, Bogan RK (2023) Long-term treatment of narcolepsy and idiopathic hypersomnia with low-sodium oxybate. Nat Sci Sleep. 15:663-675. PMID:37621721.? DOI:10.2147/NSS.S412793. PMCID:PMC10445641. https://pubmed.ncbi.nlm.nih.gov/37621721/

5. Quaedackers L, Overeem S, Pillen S (2021) Two sides of a coin: differential response to COVID-19 distancing measures in children with narcolepsy. J Clin Sleep Med. 17(4):859-862. PMID:33295278. DOI:10.5664/jcsm.9040. PMCID:PMC8020707. https://pubmed.ncbi.nlm.nih.gov/33295278/

?

Writer: Zhang, Nan

Discussion group: BroadView Studio for Biomedical Sciences



要查看或添加评论,请登录

Nan Zhang, MD, Ph.D的更多文章

  • 再次致中文为母语的朋友们

    再次致中文为母语的朋友们

    再次致中文為母語的朋友們:欢迎做领英里的朋友,生物醫學科研工作是極其艱辛的科學工作,本人工作至退休年齡,漸感精力不濟,故不再一一回答問題,尤其是和本人專業無關的問題,勿扰为盼,望谅。鉴于当前形势,特别提醒:如果您还不是已经入籍美国的华人,请…

  • 2023-02-17 Advances in Biomedical Sciences

    2023-02-17 Advances in Biomedical Sciences

    Part One: Obsessive-Compulsive Disorder (OCD) 1. Curr Top Behav Neurosci (2022) Psilocybin for the Treatment of…

  • 2023-01-13 Advances in Biomedical Sciences

    2023-01-13 Advances in Biomedical Sciences

    Part One: Quercetin 1. Front Immunol (2021) Potential Implications of Quercetin in Autoimmune Diseases - PubMed (nih.

  • 2022-12-15 Advances in Biomedical Sciences

    2022-12-15 Advances in Biomedical Sciences

    Part One: Progressive Multifocal Leukoencephalopathy (PML) 1. Nat Rev Neurol (2021) Progressive multifocal…

  • 致母語為中文的朋友們

    致母語為中文的朋友們

    致中文為母語的朋友們:欢迎做领英里的朋友,生物醫學科研工作是極其艱辛的科學工作,本人工作至退休年齡,漸感精力不濟,故不再一一回答問題,尤其是和本人專業無關的問題,望諒。

  • 2022-11-11 Advances in Biomedical Sciences

    2022-11-11 Advances in Biomedical Sciences

    Part One: Neuropathic Pain 1. Physiol Rev (2021) Neuropathic Pain: From Mechanisms to Treatment - PubMed (nih.

  • 2022-10-07 Advances in Biomedical Sciences

    2022-10-07 Advances in Biomedical Sciences

    Part One: Alzheimer’s disease and COVID-19 Mol Neurobiol (2021) Neurobiochemical Cross-talk Between COVID-19 and…

  • 2022-09-23 Advances in Biomedical Sciences

    2022-09-23 Advances in Biomedical Sciences

    Part One: Anti-COVID-19 drugs Innovation (Camb, Sep 9) The First Chinese Oral Anti-COVID-19 Drug Azvudine Launched -…

  • 2022-09-09 Advances in Biomedical Sciences

    2022-09-09 Advances in Biomedical Sciences

    Part One: Lacunar Infarction 1. Clin Neurol Neurosurg (2018) Lacunar infarction in adult patients with moyamoya disease…

  • 2022-08-26 Advances in Biomedical Sciences

    2022-08-26 Advances in Biomedical Sciences

    Part One: Monkeypox 1. Clin Infect Dis (2014) Human monkeypox - PubMed (nih.

社区洞察

其他会员也浏览了