Machine Learning with Python: k-Means Clustering 预览

Machine Learning with Python: k-Means Clustering

讲师: Frederick Nwanganga 455 位用户赞了
时长: 50 分钟 技能水平: 中级 发布日期: 2022/5/23

课程详情

Clustering—an unsupervised machine learning approach used to group data based on similarity—is used for work in network analysis, market segmentation, search results grouping, medical imaging, and anomaly detection. K-means clustering is one of the most popular and easy to use clustering algorithms. In this course, Fred Nwanganga gives you an introductory look at k-means clustering—how it works, what it’s good for, when you should use it, how to choose the right number of clusters, its strengths and weaknesses, and more. Fred provides hands-on guidance on how to collect, explore, and transform data in preparation for segmenting data using k-means clustering, and gives a step-by-step guide on how to build such a model in Python.

您将获得的技能

了解讲师

学员评价

4.8 分,最高 5 分

334 条评分
  • 5 星
    当前数据: 275 82%
  • 4 星
    当前数据: 48 14%
  • 3 星
    当前数据: 10 3%
  • 2 星
    当前数据: 1 1%
  • 1 星
    当前数据: 0 0%

内容

课程内容

  • 边学边练 1 个练习文件
  • 知识测验 1 个测验
  • 随时随地学习 可在平板电脑和手机上访问

相似课程

下载课程

使用 iOS 或安卓版领英学习 APP,即可在移动设备上离线观看课程。