课程: Machine Learning with Data Reduction in Excel, R, and Power BI
今天就学习课程吧!
今天就开通帐号,24,600 门业界名师课程任您挑!
Solution: PCA
(upbeat music) - I'm going to create a new data frame called Denver for the daily temperature measurements from year 2010 and later. I'll filter our DF data frame variable so that the city equals Denver, and then I'll add a second condition by closing the parentheses around the first and adding an ampersand, and let's say DF year is greater than or equal to 2010. For the columns, I'm only going to select the date, the city, the TMIN column, and the TMAX column. Let's see what the original data points look by plotting the minimum temperature, which we'll put on the x-axis. Let's put the max on the y-axis, so it's going to go first. We see here that there's pretty strong correlation between the TMAX and the TMIN fields for Denver over the last ten years or so of weather data. What we're interested in doing with the PCA model is seeing how we can turn this scatterplot to identify some of the outliers and…
随堂练习,边学边练
下载课堂讲义。学练结合,紧跟进度,轻松巩固知识。
内容
-
-
-
-
-
Visualizing PCA9 分钟 40 秒
-
(已锁定)
Using Excel Solver to find solutions5 分钟 6 秒
-
(已锁定)
Solving for principal components axes3 分钟 48 秒
-
(已锁定)
Eigenvalues6 分钟 9 秒
-
Eigenvectors9 分钟 50 秒
-
(已锁定)
PCA projection space7 分钟 29 秒
-
(已锁定)
Scree plot2 分钟 39 秒
-
(已锁定)
Challenge: PCA47 秒
-
(已锁定)
Solution: PCA4 分钟 55 秒
-
-
-
-