课程: Generative AI: Working with Large Language Models
今天就学习课程吧!
今天就开通帐号,24,700 门业界名师课程任您挑!
Chinchilla
- [Instructor] Up to this point, we've seen that the trend has been to increase the model size. Interestingly, the number of training tokens used for most of these models has been around 300 billion. Now, the DeepMind team's hypothesis was that Gopher was too large. If you take the same compute budget, a smaller model trained on more data will perform better. They then tested this hypothesis by training over 400 language models, ranging from 70 million to over 16 billion parameters with data sets from five to 500 billion tokens. They then trained Chinchilla a 70 billion parameter model with 1.4 trillion training tokens and Chinchilla outperforms Gopher which has 280 billion parameters GPT-3 with its 175 billion parameters and Megatron-Turing NLG with its 530 billion parameters on a large range of downstream evaluation tasks. As this is a smaller model this means less computes required for fine tuning and inference.…
随堂练习,边学边练
下载课堂讲义。学练结合,紧跟进度,轻松巩固知识。
内容
-
-
-
-
-
GPT-34 分钟 32 秒
-
(已锁定)
GPT-3 use cases5 分钟 27 秒
-
(已锁定)
Challenges and shortcomings of GPT-34 分钟 17 秒
-
(已锁定)
GLaM3 分钟 6 秒
-
(已锁定)
Megatron-Turing NLG Model1 分钟 59 秒
-
(已锁定)
Gopher5 分钟 23 秒
-
(已锁定)
Scaling laws3 分钟 14 秒
-
(已锁定)
Chinchilla7 分钟 53 秒
-
(已锁定)
BIG-bench4 分钟 24 秒
-
(已锁定)
PaLM5 分钟 49 秒
-
(已锁定)
OPT and BLOOM2 分钟 51 秒
-
(已锁定)
GitHub models2 分钟 43 秒
-
(已锁定)
Accessing Large Language Models using an API6 分钟 25 秒
-
(已锁定)
Inference time vs. pre-training4 分钟 5 秒
-
-