课程: Data Pipeline Automation with GitHub Actions Using R and Python
今天就学习课程吧!
今天就开通帐号,24,700 门业界名师课程任您挑!
Challenge: Query the API - GitHub教程
课程: Data Pipeline Automation with GitHub Actions Using R and Python
Challenge: Query the API
(upbeat music) - [Instructor] We will conclude this chapter with practicing what we learned so far, using the EIA dashboard to extract metadata and querying the data from the API using R or Python. This time we're going to pull data of the San Diego Gas and Electricity balancing authority subregion. Start by going to the EIA dashboard to extract the metadata of the San Diego Gas and Electricity balancing authority subregion. This subregion is under the California Independent System Operator parent. Then with R or Python, set a GET request to pull observation between January 1st and January 31st, 2024. Last but not least, use the eia_backfill function to pull the data from January 1st, 2020 to February 1st, 2024.
内容
-
-
-
(已锁定)
EIA API2 分钟 47 秒
-
(已锁定)
Setting an environment variable3 分钟 22 秒
-
(已锁定)
The EIA API dashboard4 分钟 10 秒
-
(已锁定)
GET request structure5 分钟 41 秒
-
Querying the data via the browser4 分钟 4 秒
-
(已锁定)
Querying data with R and Python2 分钟 50 秒
-
(已锁定)
Pulling metadata from API with R3 分钟 5 秒
-
(已锁定)
Sending a simple GET request with R5 分钟 19 秒
-
(已锁定)
API limitations with R4 分钟 43 秒
-
Handling a large data request with R4 分钟 27 秒
-
Pulling metadata from API with Python3 分钟 47 秒
-
(已锁定)
Sending a simple GET request with Python4 分钟 44 秒
-
(已锁定)
API limitations with Python3 分钟 54 秒
-
(已锁定)
Handling a large data request with Python3 分钟 10 秒
-
(已锁定)
Challenge: Query the API1 分钟 2 秒
-
(已锁定)
Solution: Query the API with R7 分钟 28 秒
-
(已锁定)
Solution: Query the API with Python7 分钟 45 秒
-
(已锁定)
-
-
-
-