How can you handle perfect separation in logistic regression models?
Logistic regression is a popular method for modeling binary outcomes, such as whether a customer will buy a product or not. However, sometimes you may encounter a situation where one or more of your predictors can perfectly separate the two classes of your outcome variable. This is called perfect separation, and it can cause serious problems for your logistic regression model, such as infinite estimates, large standard errors, and poor fit. In this article, you will learn how to detect and handle perfect separation in logistic regression models, using some practical examples and tips.